Please wait a minute...
 
隧道与地下工程灾害防治  2021, Vol. 3 Issue (3): 11-19    DOI: 10.19952/j.cnki.2096-5052.2021.03.02
  先进计算方法在隧道与岩土工程中的应用 本期目录 | 过刊浏览 | 高级检索 |
基于4D-LSM的隧道围岩爆破振动和损伤判定研究
赵高峰1,徐志超1,郝益民1,扈晓冬1,邓稀肥2
1.天津大学建筑工程学院, 天津 300350;2.中铁四局集团有限公司, 安徽 合肥 230023
Numerical modeling of vibration and damage of surrounding rock in tunnel blasting by using 4D-LSM
ZHAO Gaofeng1, XU Zhichao1, HAO Yimin1, HU Xiaodong1, DENG Xifei2
1. School of Civil Engineering, Tianjin University, Tianjin 300350, China;
2. China Tiesiju Civil Engineering Group, Hefei 230023, Anhui, China
下载:  PDF (7704KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对四维晶格弹簧模型(four-dimensional lattice spring model, 4D-LSM)在岩石爆破中的应用进行研究,介绍4D-LSM在隧道围岩爆破方面的基本要素,包括动力学方程、无反射边界条件以及基于多体破坏准则的岩石破坏模型等。针对隧道围岩爆破问题,采用4D-LSM建立隧道爆破围岩振动分析模型、单炮孔爆破模型以及围岩损伤模型等。在不同隧道爆破设计方案的基础上,通过几何简化和边界条件简化处理这些模型实现对给定爆破方案的隧道爆破围岩关键点峰值荷载速度的量化分析。针对单孔自由面爆破问题,对比离散晶格弹簧模型(distinct lattice spring model, DLSM)和4D-LSM模拟效果,展示了4D-LSM在处理岩石动态大变形破坏方面的优势。采用4D-LSM实现不同爆破设计参数下围岩损伤区深度的数值分析,结合质点振动速度实现对不同爆破方案的安全性评价。基于数值仿真对爆破方案安全性的敏感性定量评价为实现隧道岩石爆破方案的智能优化提供了支持。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵高峰
徐志超
郝益民
扈晓冬
邓稀肥
关键词:  隧道爆破  围岩振动  围岩损伤  数值模拟  4D-LSM    
Abstract: The application of 4D-LSM in rock blasting was studied. The fundamental principles of 4D-LSM in tunnel surrounding rock blasting were introduced, including system equations, non-reflective boundary conditions and rock fracturing model based on multi-body failure criterion. Aiming at the blasting of tunnel surrounding rock, 4D-LSM was used to establish the surrounding rock vibration analysis model, single hole blasting model and surrounding rock damage model under blasting. On the basis of different tunnel blasting design schemes, these models were processed through geometric simplification and boundary condition simplification to realize the quantitative analysis of the peak load velocity of the key points of the tunnel blasting surrounding rock for the given blasting scheme. Aiming at the problem of single-hole free-surface blasting, the simulation effects of DLSM and 4D-LSM were compared, and the advantages of 4D-LSM in dealing with large dynamic deformation and failure of rocks were demonstrated. The numerical modelling of surrounding rock damage zone depth under different blasting design parameters was realized by 4D-LSM. The safety classification and ranking of different blasting schemes were realized through the prediction and analysis of particle vibration velocity and damage zone depth predicted by 4D-LSM. The optimization of the tunnel rock blasting design could be realized by quantitative sensitivity analysis and ranking of blasting safety based on numerical simulation by using 4D-LSM.
Key words:  tunnel blasting    surrounding rock vibration    surrounding rock damage    numerical simulation    4D-LSM
收稿日期:  2021-07-15      修回日期:  2021-08-30      发布日期:  2021-09-20     
中图分类号:  TD235  
基金资助: 国家自然科学基金资助项目(11772221);中铁四局集团有限公司隧道爆破设计标准化智能系统研发(2016GKF-0462)
作者简介:  赵高峰(1982— ),男,山西长治人,博士,教授,博士生导师,主要研究方向为岩石动力学、多尺度方法和高性能数值计算. E-mail:gaofeng.zhao@tju.edu.cn
引用本文:    
赵高峰, 徐志超, 郝益民, 扈晓冬, 邓稀肥. 基于4D-LSM的隧道围岩爆破振动和损伤判定研究[J]. 隧道与地下工程灾害防治, 2021, 3(3): 11-19.
ZHAO Gaofeng, XU Zhichao, HAO Yimin, HU Xiaodong, DENG Xifei. Numerical modeling of vibration and damage of surrounding rock in tunnel blasting by using 4D-LSM. Hazard Control in Tunnelling and Underground Engineering, 2021, 3(3): 11-19.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2021/V3/I3/11
[1] MA G W, HAO H, ZHOU Y X. Modeling of wave propagation induced by underground explosion[J]. Computers and Geotechnics, 1998, 22(3/4): 283-303.
[2] 王志亮, 郑明新. 基于TCK损伤本构的岩石爆破效应数值模拟[J]. 岩土力学, 2008, 29(1): 230-234. WANG Zhiliang, ZHENG Mingxin. Numerical simulation of effect of rock blasting based on TCK damage constitutive model[J]. Rock and Soil Mechanics, 2008, 29(1): 230-234.
[3] BENDEZU M, ROMANEL C, ROEHL D. Finite element analysis of blast-induced fracture propagation in hard rocks[J]. Computers & Structures, 2017, 182: 1-13.
[4] LI H B, XIA X, LI J C, et al. Rock damage control in bedrock blasting excavation for a nuclear power plant[J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48(2): 210-218.
[5] 陈占军,朱传云,周小恒. 爆破荷载作用下岩石边坡动态响应的FLAC3D模拟研究[J]. 爆破, 2005,22(4):8-13. CHEN Zhanjun, ZHU Chuanyun, ZHOU Xiaoheng. FLAC3D simulation for dynamic response of rock slope under explosion[J]. Blasting, 2005, 22(4):8-13.
[6] 李飞,陈卫忠,李术才,等. 高速公路浅埋大跨度双跨连拱隧道爆破振动影响研究[J]. 岩石力学与工程学报, 2004, 23(增刊2): 4744-4748. LI Fei, CHEN Weizhong, LI Shucai, et al. Study of effects of blast on shallow large-span double-linked-arch tunnel of expressway[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(Suppl.2): 4744-4748.
[7] PRAMANIK R, DEB D. Implementation of smoothed particle hydrodynamics for detonation of explosive with application to rock fragmentation[J]. Rock Mechanics and Rock Engineering, 2015, 48(4): 1683-1698.
[8] HU W Q, CHEN Z. Model-based simulation of the synergistic effects of blast and fragmentation on a concrete wall using the MPM[J]. International Journal of Impact Engineering, 2006, 32(12): 2066-2096.
[9] 马上, 张雄. 聚能装药射流形成的自适应物质点法模拟[J]. 固体力学学报, 2009,30(5): 504-508. MA Shang, ZHANG Xiong. Adaptive material point method for shaped charge jet formation[J]. Chinese Journal of Solid Mechanics, 2009, 30(5): 504-508.
[10] XU L, SCHREYER H, SULSKY D. Blast-induced rock fracture near a tunnel[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2015, 39(1): 23-50.
[11] CHEN S G, ZHAO J. A study of UDEC modelling for blast wave propagation in jointed rock masses[J]. International Journal of Rock Mechanics and Mining Sciences, 1998, 35(1): 93-99.
[12] DENG X F, ZHU J B, CHEN S G, et al. Some fundamental issues and verification of 3DEC in modeling wave propagation in jointed rock masses[J]. Rock Mechanics and Rock Engineering, 2012, 45(5): 943-951.
[13] ZHAO Z Y, ZHANG Y, BAO H R. Tunnel blasting simulations by the discontinuous deformation analysis[J]. International Journal of Computational Methods, 2011, 8(2): 277-292.
[14] NING Y J, YANG J, MA G W, et al. Modelling rock blasting considering explosion gas penetration using discontinuous deformation analysis[J]. Rock Mechanics and Rock Engineering, 2011, 44(4):483-490.
[15] 张秀丽, 焦玉勇, 刘泉声, 等. 节理对爆炸波传播影响的数值研究[J]. 岩土力学, 2008,29(3): 717-721. ZHANG Xiuli, JIAO Yuyong, LIU Quansheng, et al. Numerical study on effect of joints on blasting wave propagation in rock mass[J]. Rock and Soil Mechanics, 2008, 29(3): 717-721.
[16] PARK B K, YOON J, JEON S, et al. Study on blast-induced fracturing for determination of optimal spacing between contour holes using PFC[C] //Proceedings of the International Symposium of the International Society for Rock Mechanics.[S.l.] :Elsevier B.V.,2005:441-446.
[17] 崔铁军,马云东,王来贵. 基于PFC3D的露天矿边坡爆破过程模拟及稳定性研究[J]. 应用数学和力学, 2014, 35(7): 759-767. CUI Tiejun, MA Yundong, WANG Laigui. Blasting process simulation and stability study of an open mine slope based on PFC3D[J]. Applied Mathematics and Mechanics, 2014, 35(7): 759-767.
[18] LI X, ZHANG Q B, HE L, et al. Particle-based numerical manifold method to model dynamic fracture process in rock blasting[J]. International Journal of Geomechanics, 2017, 17(5): E4016014.1-E4016014.20.
[19] ZHAO G F, FANG J N, ZHAO J. A 3D distinct lattice spring model for elasticity and dynamic failure[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2011, 35(8): 859-885.
[20] JIANG C, ZHAO G F, KHALILI N. On crack propagation in brittle material using the distinct lattice spring model[J]. International Journal of Solids and Structures, 2017, 118/119: 41-57.
[21] WANG Y. Analysis of dynamic characteristics of through-wall cracks between 2 boreholes in the directed fracture controlled blasting[J]. Fatigue & Fracture of Engineering Materials & Structures, 2018, 41(2): 273-286.
[22] ZHAO G F. Developing a four-dimensional lattice spring model for mechanical responses of solids[J]. Computer Methods in Applied Mechanics and Engineering, 2017, 315: 881-895.
[23] ZHAO G F, DENG Z Q, ZHANG B. Multibody failure criterion for the four-dimensional lattice spring model[J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 123: 104126.
[24] 赵高峰,殷超凡,扈晓冬,等. 岩石隧道光面爆破的自动化布孔设计[J]. 隧道与地下工程灾害防治, 2020,2(3): 48-57. ZHAO Gaofeng, YIN Chaofan, HU Xiaodong, et al. Automatic design of blast-hole pattern for smooth blasting of rock tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2020, 2(3): 48-57.
[25] 扈晓冬. 岩石隧道全断面光面爆破炮孔布置的优化设计研究[D]. 天津: 天津大学, 2019. HU Xiaodong. Optimization design study of blasthole layout for full section smooth blasting of rock tunnel[D]. Tianjin: Tianjin University, 2019.
[1] 孙港, 王军祥, 孟祥竹, 郭连军, 孙杰. 基于近场动力学理论的岩石双孔爆破动态断裂行为数值模拟[J]. 隧道与地下工程灾害防治, 2023, 5(2): 42-58.
[2] 赵兴东, 窦翔, 李勇, 王立君. 基于Ventsim的地下水封洞库建造期通风方式优选[J]. 隧道与地下工程灾害防治, 2023, 5(1): 8-17.
[3] 黄兴, 张炜, 殷建钢, 施皓, 张晓磊. 填埋场扩建后下穿隧道结构的安全性[J]. 隧道与地下工程灾害防治, 2023, 5(1): 55-63.
[4] 党晓宇, 马劲松. 基于桩板组合结构等代仰拱的公路隧道加固方案[J]. 隧道与地下工程灾害防治, 2023, 5(1): 90-96.
[5] 关振长, 周宇轩, 吕春波, 吕荔炫. 空气间隔装药周边眼爆破精细化数值模拟[J]. 隧道与地下工程灾害防治, 2022, 4(4): 11-19.
[6] 黄昕, 谷冠思, 张子新, 李昀. 考虑渗流的泥水平衡盾构隧道稳定性数值模拟[J]. 隧道与地下工程灾害防治, 2022, 4(2): 28-38.
[7] 李相兵, 梁波, 鲁思源. 考虑多因素影响的双侧壁导坑法施工参数研究[J]. 隧道与地下工程灾害防治, 2022, 4(2): 39-48.
[8] 石宗涛. 济南黄河隧道泥水盾构开挖面稳定性分析[J]. 隧道与地下工程灾害防治, 2022, 4(1): 71-77.
[9] 李钊, 梁庆国, 孙文, 曹小平. 隧道台阶法施工上台阶长度对隧道变形的影响[J]. 隧道与地下工程灾害防治, 2022, 4(1): 55-62.
[10] 曹成威, 石钰锋, 徐长节, 侯世磊, 龚宏华, 纪松岩. 某明挖深基坑地下连续墙非对称配筋优化设计[J]. 隧道与地下工程灾害防治, 2022, 4(1): 63-70.
[11] 房倩, 杜建明, 王赶, 杨晓旭. 模型边界对圆形隧道开挖引起地表沉降的影响分析[J]. 隧道与地下工程灾害防治, 2022, 4(1): 10-17.
[12] 夏英杰, 孟庆坤, 唐春安, 张永彬, 赵丹晨, 赵振兴. 岩石破裂过程分析方法在隧道工程模拟中的应用[J]. 隧道与地下工程灾害防治, 2021, 3(3): 36-49.
[13] 黄笑, 肖培伟, 董林鹭, 杨兴国, 徐奴文. 高地应力地下洞室群开挖过程岩体力学响应及破坏机制[J]. 隧道与地下工程灾害防治, 2021, 3(3): 85-93.
[14] 张鸿勇, 张艳杰, 刘春, 施斌, 曹政. 基于离散元孔隙密度流法的地铁隧道收敛变形注浆整治分析[J]. 隧道与地下工程灾害防治, 2021, 3(3): 100-110.
[15] 乔雄, 倪伟淋, 骆维斌, 刘文高. 三车道公路岩土混合隧道单侧壁导坑法快速施工[J]. 隧道与地下工程灾害防治, 2021, 3(2): 33-42.
[1] QIAN Qihu. Scientific use of the urban underground space to construction the harmonious livable and beautiful city[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 1 -7 .
[2] DENG Mingjiang, LIU Bin. Challenges, countermeasures and development direction of geological forward-prospecting for TBM cluster tunneling in super-long tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 8 -19 .
[3] DING Xiuli, ZHANG Yuting, ZHANG Chuanjian, YAN Tianyou, HUANG Shuling. Review on countermeasures and their adaptability evaluation to tunnels crossing active faults[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 20 -35 .
[4] JIAO Yuyong, ZHANG Weishe, OU Guangzhao, ZOU Junpeng, CHEN Guanghui. Review of the evolution and mitigation of the water-inrush disaster in drilling-and-blasting excavated deep-buried tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 36 -46 .
[5] ZHANG Qingsong, ZHANG Lianzhen, LI Peng, FENG Xiao. New progress in grouting reinforcement theory of water-rich soft stratum in underground engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 47 -57 .
[6] XIA Kaiwen, XU Ying, CHEN Rong. Dynamic tests of rocks subjected to simulated deep underground environments[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 58 -75 .
[7] HONG Kairong. Study on rock breaking and wear of TBM hob in high-strength high-abrasion stratum[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 76 -85 .
[8] TAN Zhongsheng. Application experimental study of high-strength lattice girders with heat treatment in tunnel engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 86 -92 .
[9] CHEN Jianxun, LUO Yanbin. The stability of structure and its control technology for lager-span loess tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 93 -101 .
[10] JING Hongwen, YU Liyuan, SU Haijian, GU Jincai, YIN Qian. Development and application of catastrophic experiment system for water inrush in surrounding rock of deep tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 102 -110 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn