Please wait a minute...
 
隧道与地下工程灾害防治  2021, Vol. 3 Issue (3): 85-93    DOI: 10.19952/j.cnki.2096-5052.2021.03.09
  先进计算方法在隧道与岩土工程中的应用 本期目录 | 过刊浏览 | 高级检索 |
高地应力地下洞室群开挖过程岩体力学响应及破坏机制
黄笑,肖培伟,董林鹭,杨兴国,徐奴文*
四川大学水力学与山区河流开发保护国家重点实验室, 四川 成都 610065
Mechanical response and failure mechanism of rock mass during excavation of underground caverns under high geostress
HUANG Xiao, XIAO Peiwei, DONG Linlu, YANG Xingguo, XU Nuwen*
State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, Sichuan, China
下载:  PDF (7512KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 某在建电站地下洞室群规模巨大,具有高边墙、大跨度等特点,通过数值模拟方法研究地下洞室分层开挖过程中区域围岩变形、应力演化及塑性区分布特征,在此基础上对地下洞室群开挖过程围岩变形破坏机制进行分析。结果表明:在洞室开挖初期发生的围岩破坏一般为应力主导,随着开挖面增大逐渐转变为结构面主导。数值模拟结果较好地体现出高地应力硬岩受结构面影响的破坏特征,可为制定洞室开挖措施和支护设计的制定提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄笑
肖培伟
董林鹭
杨兴国
徐奴文
关键词:  地下洞室群  离散元数值模拟  围岩破坏机制  高地应力  岩体结构    
Abstract: The underground caverns of a hydropower station under construction are large in scale, with high side walls and large span.The deformation, stress evolution and plastic zone distribution characteristics of surrounding rock mass during layered excavation of underground caverns were studied by numerical simulation method, and the deformation and failure mechanism of surrounding rock mass was analyzed based on the results. Results showed that the failure of surrounding rock mass in the early excavation of the caverns was dominated generally by stress, and gradually changed to dominated by structural plane with the increase of excavation face. The numerical simulation results revealed the failure characteristics of hard rock with high in situ stress under the influence of structural plane, which could provide reference for the formulation of excavation measures and support design of caverns.
Key words:  underground caverns    discrete element method    failure mechanism    high geostress    rock structures
收稿日期:  2021-05-31      修回日期:  2021-09-01      发布日期:  2021-09-20     
中图分类号:  TU452  
通讯作者:  徐奴文(1981— ),男,湖北武汉人,博士,研究员,主要研究方向为岩土工程灾害机理与微震监测.    E-mail:  xunuwen@scu.edu.cn
作者简介:  黄笑(1997— ),女,河南南阳人,硕士研究生,主要研究方向为岩土工程数值模拟与微震监测.E-mail:1394568346@qq.com.
引用本文:    
黄笑, 肖培伟, 董林鹭, 杨兴国, 徐奴文. 高地应力地下洞室群开挖过程岩体力学响应及破坏机制[J]. 隧道与地下工程灾害防治, 2021, 3(3): 85-93.
HUANG Xiao, XIAO Peiwei, DONG Linlu, YANG Xingguo, XU Nuwen. Mechanical response and failure mechanism of rock mass during excavation of underground caverns under high geostress. Hazard Control in Tunnelling and Underground Engineering, 2021, 3(3): 85-93.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2021/V3/I3/85
[1] 高乔,马克,唐春安,等. 荒沟抽水蓄能电站地下厂房开挖过程微震活动特征与围岩稳定性研究[J]. 隧道建设(中英文), 2019,39(5):775-782. GAO Qiao, MA Ke, TANG Chun'an, et al. Microseismicity and stability of underground powerhouse at Huanggou pumped-storage power station subjected to excavation[J]. Tunnel Construction, 2019, 39(5):775-782.
[2] 向天兵, 冯夏庭, 江权, 等. 大型洞室群围岩破坏模式的动态识别与调控[J]. 岩石力学与工程学报, 2011,30(5):871-883. XIANG Tianbing, FENG Xiating, JIANG Quan, et al. Failure mode dynamic recognition and control for surrounding rock of large-scale cavern group[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(5):871-883.
[3] FENG G L, FENG X T, CHEN B R, et al. A microseismic method for dynamic warning of rockburst development processes in tunnels[J]. Rock Mechanics and Rock Engineering, 2015, 48(5):2061-2076.
[4] MA K, ZHANG J H, ZHOU Z, et al. Comprehensive analysis of the surrounding rock mass stability in the underground caverns of Jinping I Hydropower Station in Southwest China[J]. Tunnelling and Underground Space Technology, 2020, 104:103525.
[5] LI A, DAI F, XU N W, et al. Analysis of a complex flexural toppling failure of large underground caverns in layered rock masses [J]. Rock Mechanics and Rock Engineering, 2019, 52(9):3157-3181.
[6] DAI F, LI B, XU N W, et al. Deformation forecasting and stability analysis of large-scale underground powerhouse caverns from microseismic monitoring[J]. International Journal of Rock Mechanics and Mining Sciences, 2016, 86:269-281.
[7] LI A, LIU Y, DAI F, et al. Continuum analysis of the structurally controlled displacements for large-scale underground caverns in bedded rock masses[J]. Tunnelling and Underground Space Technology, 2020, 97:103288.
[8] 周宗青,李利平,石少帅,等. 隧道突涌水机制与渗透破坏灾变过程模拟研究[J]. 岩土力学, 2020,41(11):3621-3631. ZHOU Zongqing, LI Liping, SHI Shaoshuai,et al. Study on tunnel water inrush mechanism and simulation of seepage failure process[J].Rock and Soil Mechanics, 2020, 41(11):3621-3631.
[9] 周辉,孟凡震,张传庆,等. 深埋硬岩隧洞岩爆的结构面作用机制分析[J]. 岩石力学与工程学报, 2015,34(4):720-727. ZHOU Hui,MENG Fanzhen,ZHANG Chuanqing,et al. Effect of structural plane on rockburst[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(4):720-727.
[10] 江权,冯夏庭,李邵军, 等. 高应力下大型硬岩地下洞室群稳定性设计优化的裂化-抑制法及其应用[J]. 岩石力学与工程学报, 2019,38(6):1081-1101. JIANG Quan, FENG Xiating, LI Shaojun, et al. Cracking-restraint design method for large underground caverns with hard rock under high geostress condition and its practical application[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(6): 1081-1101.
[11] 段淑倩,冯夏庭,江权,等. 高地应力下白鹤滩地下洞室群含错动带岩体破坏模式及机制研究[J]. 岩石力学与工程学报, 2017,36(4):852-864. DUAN Shuqian, FENG Xiating, JIANG Quan, et al. Failure modes and mechanisms for rock masses with staggered zones of Baihetan underground caverns under high geostress[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(4):852-864.
[12] 卢波, 丁秀丽, 邬爱清, 等. 高应力硬岩地区岩体结构对地下洞室围岩稳定的控制效应研究[J]. 岩石力学与工程学报, 2012,31(增刊2):3831-3846. LU Bo, DING Xiuli, WU Aiqing, et al. Study of influence of rock structure on surrounding rock mass stability of underground caverns in hard rock region with high geostress[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(Suppl.2):3831-3846.
[13] FUENKAJORN K, PHUEAKPHUM D. Physical model simulation of shallow openings in jointed rock mass under static and cyclic loadings[J]. Engineering Geology, 2010, 113(1/2/3/4):81-89.
[14] SAGONG M, PARK D, YOO J, et al. Experimental and numerical analyses of an opening in a jointed rock mass under biaxial compression[J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48(7):1055-1067.
[15] 李昂,戴峰,徐奴文,等. 乌东德水电站右岸地下厂房开挖围岩破坏模式及形成机制研究[J]. 岩石力学与工程学报, 2017,36(4):781-793. LI Ang, DAI Feng, XU Nuwen,et al. Failure mechanism and mode of surrounding rock of underground powerhouse at the right bank of Wudongde Hydropower Station subjected to excavation[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(4):781-793.
[16] 朱焕春,RICHARD B,PATRICK A.节理岩体数值计算方法及其应用(一):方法与讨论[J]. 岩石力学与工程学报, 2004,23(20):3444-3449. ZHU Huanchun, RICHARD B, PATRICK A. Numerical methods and application for jointed rock mass, part 1:approaches and discussions[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(20):3444-3449.
[17] 张伯虎, 邓建辉, 高明忠, 等. 基于微震监测的水电站地下厂房安全性评价研究[J]. 岩石力学与工程学报, 2012,31(5):937-944. ZHANG Bohu,DENG Jianhui,GAO Mingzhong,et al. Safety evaluation research based on microseismic monitoring in underground powerhouse of Hydropower Station[J].Chinese Journal of Rock Mechanics and Engineering, 2012, 31(5):937-944.
[18] 戴峰, 李彪, 徐奴文, 等. 白鹤滩水电站地下厂房开挖过程微震特征分析[J]. 岩石力学与工程学报, 2016,35(4):692-703. DAI Feng,LI Biao,XU Nuwen,et al. Microseismic characteristic analysis of underground powerhouse at Baihetan Hydropower Station subjected to excavation[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(4):692-703.
[19] 毛浩宇, 徐奴文, 李彪, 等. 基于离散元模拟和微震监测的白鹤滩水电站左岸地下厂房稳定性分析[J]. 岩土力学, 2020,41(7):2470-2484. MAO Haoyu, XU Nuwen, LI Biao, et al. Stability analysis of an underground powerhouse on the left bank of the Baihetan Hydropower Station based on discrete element simulation and microseismic monitoring[J]. Rock and Soil Mechanics, 2020, 41(7):2470-2484.
[20] 郭延辉, 李靖, 侯克鹏. 深部岩体初始高构造应力场的3DEC模拟反演方法分析[J]. 有色金属(矿山部分), 2020,72(2):64-69. GUO Yanhui, LI Jing, HOU Kepeng. Analysis of initial high tectonic stress field of deep rock mass by 3DEC simulation inversion method[J]. Nonferrous Metals(Mining Section), 2020, 72(2):64-69.
[21] 张頔, 李邵军, 徐鼎平, 等. 双江口水电站主厂房开挖初期围岩变形破裂与稳定性分析研究[J]. 岩石力学与工程学报, 2021,40(3):520-532. ZHANG Di, LI Shaojun, XU Dingping, et al. Investigation on deformation and cracking behaviors and stability analysis of surrounding rock mass of underground main powerhouse of Shuangjiangkou Hydropower Station during preliminary excavation[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(3):520-532.
[22] WU J H, HSIEH P H. Simulating the postfailure behavior of the seismically-triggered Chiu-fen-erh-shan landslide using 3DEC[J]. Engineering Geology, 2021, 287:106113.
[23] WANG T, FAN B, KHADKA S S. Flowchart of DEM modeling stability analysis of large underground powerhouse caverns[J]. Advances in Civil Engineering, 2020:1-15.
[24] 王涛, 陈晓玲, 于利宏. 地下洞室群围岩稳定的离散元计算[J]. 岩土力学, 2005,26(12):1936-1940. WANG Tao, CHEN Xiaoling, YU Lihong. Discrete element calculation of surrounding rock mass stability of underground cavern group[J].Rock and Soil Mechanics, 2005, 26(12):1936-1940.
[25] 陈菲, 何川, 邓建辉. 高地应力定义及其定性定量判据[J]. 岩土力学, 2015,36(4):971-980. CHEN Fei, HE Chuan, DENG Jianhui. Concept of high geostress and its qualitative and quantitative definitions[J]. Rock and Soil Mechanics, 2015, 36(4):971-980.
[26] MARTIN C D, KAISER P K, MCCREATH D R. Hoek-Brown parameters for predicting the depth of brittle failure around tunnels[J]. Canadian Geotechnical Journal, 1999, 36(1):136-151.
[27] 江权, 冯夏庭, 向天兵, 等. 大型洞室群稳定性分析与智能动态优化设计的数值仿真研究[J]. 岩石力学与工程学报, 2011,30(3):524-539. JIANG Quan, FENG Xiating, XIANG Tianbing, et al. Numerical simulation method for stability analysis and intelligent and dynamic optimization design of large cavern group[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(3):524-539.
[28] 杨云浩, 王仁坤, 邢万波, 等. 猴子岩水电站洞群硬脆性围岩变形破坏特征的3DEC分析[J]. 岩石力学与工程学报, 2015,34(增刊2):4178-4186. YANG Yunhao,WANG Renkun,XING Wanbo, et al. Analysis of deformation and failure of hard rock mass surrounding underground openings in houziyan Hydropower Station by 3DEC numerical simulation[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(Suppl.2):4178-4186.
[29] 蒋雄, 徐奴文, 周钟, 等. 两河口水电站母线洞开挖过程围岩破坏机制[J]. 岩土力学, 2019, 40(1):305-314. JIANG Xiong, XU Nuwen, ZHOU Zhong, et al. Failure mechanism of surrounding rock of bus-bar tunnels at Lianghekou Hydropower Station subjected to excavation[J]. Rock and Soil Mechanics, 2019, 40(1):305-314.
[30] NAJI A, REHMAN H, EMAD M, et al. Static and dynamic influence of the shear zone on rockburst occurrence in the headrace tunnel of the Neelum Jhelum Hydropower Project, Pakistan[J]. Energies, 2019, 12(11):2124.
[31] 卢波,王继敏,丁秀丽, 等. 锦屏一级水电站地下厂房围岩开裂变形机制研究[J]. 岩石力学与工程学报, 2010,29(12):2429-2441. LU Bo, WANG Jimin, DING Xiuli. Study of deformation and cracking mechanism of surrounding rock of Jinping Ⅰ underground powerhouse[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(12):2429-2441.
[32] 董家兴, 徐光黎, 李志鹏, 等. 高地应力条件下大型地下洞室群围岩失稳模式分类及调控对策[J]. 岩石力学与工程学报, 2014,33(11):2161-2170. DONG Jiaxing, XU Guangli, LI Zhipeng, et al. Classification of failure modes and controlling measures for surrounding rock of large-scale caverns with high geostress[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(11):2161-2170.
[33] FENG G L, FENG X T, CHEN B R, et al. Effects of structural planes on the microseismicity associated with rockburst development processes in deep tunnels of the Jinping-II Hydropower Station, China[J]. Tunnelling and Underground Space Technology, 2019, 84:273-280.
[1] 王福善. 木寨岭隧道极高地应力软岩大变形控制技术[J]. 隧道与地下工程灾害防治, 2020, 2(4): 65-73.
[1] QIAN Qihu. Scientific use of the urban underground space to construction the harmonious livable and beautiful city[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 1 -7 .
[2] DENG Mingjiang, LIU Bin. Challenges, countermeasures and development direction of geological forward-prospecting for TBM cluster tunneling in super-long tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 8 -19 .
[3] DING Xiuli, ZHANG Yuting, ZHANG Chuanjian, YAN Tianyou, HUANG Shuling. Review on countermeasures and their adaptability evaluation to tunnels crossing active faults[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 20 -35 .
[4] JIAO Yuyong, ZHANG Weishe, OU Guangzhao, ZOU Junpeng, CHEN Guanghui. Review of the evolution and mitigation of the water-inrush disaster in drilling-and-blasting excavated deep-buried tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 36 -46 .
[5] ZHANG Qingsong, ZHANG Lianzhen, LI Peng, FENG Xiao. New progress in grouting reinforcement theory of water-rich soft stratum in underground engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 47 -57 .
[6] XIA Kaiwen, XU Ying, CHEN Rong. Dynamic tests of rocks subjected to simulated deep underground environments[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 58 -75 .
[7] HONG Kairong. Study on rock breaking and wear of TBM hob in high-strength high-abrasion stratum[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 76 -85 .
[8] TAN Zhongsheng. Application experimental study of high-strength lattice girders with heat treatment in tunnel engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 86 -92 .
[9] CHEN Jianxun, LUO Yanbin. The stability of structure and its control technology for lager-span loess tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 93 -101 .
[10] JING Hongwen, YU Liyuan, SU Haijian, GU Jincai, YIN Qian. Development and application of catastrophic experiment system for water inrush in surrounding rock of deep tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 102 -110 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn