Please wait a minute...
 
隧道与地下工程灾害防治  2021, Vol. 3 Issue (3): 76-84    DOI: 10.19952/j.cnki.2096-5052.2021.03.08
  先进计算方法在隧道与岩土工程中的应用 本期目录 | 过刊浏览 | 高级检索 |
基于CDEM的层状节理隔水岩柱水压致裂特性研究
侯福金1,张丽2*,蒋庆1,冯春2,李世海2
1. 山东高速建设管理集团有限公司, 山东 济南250014;2. 中国科学院力学研究所, 北京100190
Hydraulic fracturing characteristics of water resisting rock mass with layered joints based on CDEM
HOU Fujin1, ZHANG Li2*, JIANG Qing1, FENG Chun2, LI Shihai2
1. Shandong Hi-speed Construction Management Group Co., Ltd., Jinan 250014, Shandong, China;
2. Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
下载:  PDF (10686KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 为研究岩溶隧道层状节理隔水岩柱水压致裂特性,建立隔水岩柱分析模型,通过量纲分析获得影响隔水岩柱临界承载水压的关键因素,并开展单一节理单元岩体的强度特性分析,借助连续-非连续数值模拟方法(continuum discontinuum element method,CDEM)观察裂缝扩展贯通过程,获得不同节理倾角隔水岩柱的破坏模式和临界承载水压,以及隔水岩柱的破裂度和损伤度随节理倾角的演化规律。计算结果表明:层状节理隔水岩柱的破坏模式包括基岩破坏、沿节理面的层间破坏和复合型破坏;受上覆岩层自重影响,隔水岩柱临界水压具有明显的倾角效应,呈先减小后增大的变化趋势;节理面层间贯穿性破坏的破裂度和损伤度远小于基岩贯穿性破坏。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
侯福金
张丽
蒋庆
冯春
李世海
关键词:  层状节理  岩溶隧道  破坏模式  连续-非连续  突水    
Abstract: In order to study the hydraulic fracturing characteristics of water resisting rock mass with layered joints in karst tunnels, an analysis model of water resisting rock mass was established, the key factors affecting the critical hydraulic pressure of rock column was obtained through dimensional analysis, and the rock strength properties of single joint element was analyzed. With the help of continuum-discontinuum element method to observe the fracture crack and penetration process,the failure mode and critical water pressure of the water resisting rock mass with different joint inclination angles were obtained, as well as the evolution law of the rock mass fracture degree and damage degree. The numerical results showed that the failure modes of water resisting rock mass with layered jointed included bedrock failure, interlayer failure and composite failure; influenced by the weight of overlying strata, the critical water pressure of water resisting rock column had an obvious obliquity effect, which first decreased and then increased; the fracture degree and damage degree of interlayer penetrating failure were much less than that of bedrock penetrating failure.
Key words:  layered joint    karst tunnel    failure mode    continuum-discontinuum    water inrush
收稿日期:  2021-04-09      修回日期:  2021-07-26      发布日期:  2021-09-20     
中图分类号:  TU31  
通讯作者:  张丽(1982— ),女,湖北十堰人,硕士,工程师,主要研究方向为连续-非连续数值计算方法的工程应用.    E-mail:  lizhang@imech.ac.cn
作者简介:  侯福金(1973— ),男,山东巨野人,博士,研究员,主要研究方向为隧道与地下工程.E-mail:279415652@qq.com.
引用本文:    
侯福金, 张丽, 蒋庆, 冯春, 李世海. 基于CDEM的层状节理隔水岩柱水压致裂特性研究[J]. 隧道与地下工程灾害防治, 2021, 3(3): 76-84.
HOU Fujin, ZHANG Li, JIANG Qing, FENG Chun, LI Shihai. Hydraulic fracturing characteristics of water resisting rock mass with layered joints based on CDEM. Hazard Control in Tunnelling and Underground Engineering, 2021, 3(3): 76-84.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2021/V3/I3/76
[1] YANG Zihan, ZHANG Jiahua. Minimum safe thickness of rock plug in Karst tunnel according to upper bound theorem[J]. Journal of Central South University, 2016, 23: 2346-2353.
[2] 李术才,王康,李利平,等. 岩溶隧道突水灾害形成机理及发展趋势[J].力学学报,2017,9(1):22-30. LI Shucai, WANG Kang, LI Liping, et al. Mechanical mechanism and development trend of water-inrush disasters in Karst tunnels[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 9(1):22-30.
[3] 曹洁,左宇军,李伟,等.充水溶洞对隧道围岩稳定性影响的数值模拟[J]. 工业安全与环保,2016,42(11):5-7. CAO Jie, ZUO Yujun, LI Wei, et al. Numerical simulation on the influences of water filling cave on the stability of tunnel surrounding rock[J]. Industrial Safety and Environmental Protection, 2016, 42(11):5-7.
[4] 田兴朝,刘远明,马智理,等.基于颗粒流数值模拟的层状节理对隧道围岩变形影响分析[J].煤矿安全,2019,50(10):235-238. TIAN Xingchao, LIU Yuanming, MA Zhili, et al. Influence of layered joints on deformation of tunnel surrounding rock based on particle flow numerical simulation[J].Safety in Coal Mines, 2019, 50(10):235-238.
[5] 周宗青,李利平,石少帅,等.隧道突涌水机制与渗透破坏灾变过程模拟研究[J].岩土力学,2020,41(11):3621-3631. ZHOU Zongqing, LI Liping, SHI Shaoshuai, et al. Study on tunnel water inrush mechanism and simulation of seepage failure process[J]. Rock and Soil Mechanics, 2020, 41(11):3621-3631.
[6] 孙谋,刘维宁.高风险岩溶隧道掌子面突水机制研究[J].岩土力学,2011,32(4):1175-1180. SUN Mou, LIU Weining. Research on water inrush mechanism induced by Karst tunnel face with high risk[J].Rock and Soil Mechanics, 2011, 32(4):1175-1180.
[7] BAI Haibo, MA Dan, CHEN Zhanqing. Mechanical behavior of groundwater seepage in Karst collapse pillars[J]. Engineering Geology, 2013, 164:101-106.
[8] 李利平,李术才,张庆松. 岩溶地区隧道裂隙水突出力学机制研究[J].岩土力学,2010,31(2): 523-528. LI Liping, LI Shucai, ZHANG Qingsong. Study of mechanism of water inrush induced by hydraulic fracturing in Karst tunnels[J]. Rock and Soil Mechanics, 2010, 31(2): 523-528.
[9] 刘招伟,何满潮,王树仁.圆梁山隧道岩溶突水机理及防治对策研究[J].岩土力学,2006,27(2):228-232. LIU Zhaowei, HE Manchao, WANG Shuren. Study on Karst water burst mechanism and prevention counter measures in Yuanliangshan Tunnel[J]. Rock and Soil Mechanics, 2006, 27(2):228-232.
[10] 张玉军,刘谊平.层状岩体抗剪强度的方向性及剪切破坏面的确定[J].岩土力学,2001(3):254-257. ZHANG Yujun, LIU Yiping. Anistropy of shear strength of layered rocks and determination of shear failure plane[J]. Rock and Mechanics, 2001(3):254-257.
[11] 黄书岭,徐劲松,丁秀丽,等.考虑结构面特性的层状岩体复合材料模型与应用研究[J].岩石力学与工程学报,2010,29(4):743-756. HUANG Shuling, XU Jinsong, DING Xiuli, et al. Study of layered rock mass composite model based on characteristics of structural plane and its application[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(4):743-756.
[12] 夏彬伟.深埋隧道层状岩体破坏失稳机理实验研究[D].重庆:重庆大学,2009. XIA Binwei. Experimental study on the mechanism of instability of layered rock mass in deep buried lunnel[D]. Chongqing:Chongqing University, 2009.
[13] 张学民.岩石材料各向异性特征及其对隧道围岩稳定性影响研究[D].长沙:中南大学,2007. ZHANG Xuemin. Anisotropic characteristic of rock material and its effect on stability of tunnel surrounding rock[D]. Changsha: Central South University, 2007.
[14] 冯春,李世海,姚再兴.基于连续介质力学的块体单元离散弹簧法研究[J].岩石力学与工程学报,2010,29(增刊1):2690-2704. FENG Chun, LI Shihai, YAO Zaixing. Study of block-discrete-spring method based on continuum mechanics[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(Suppl.1): 2690-2704.
[15] 王杰,李世海,周东,等.模拟岩石破裂过程的块体单元离散弹簧模型[J]. 岩土力学,2013,34(8): 2355-2362. WANG Jie, LI Shihai, ZHOU Dong, et al. A block-discrete-spring model to simulate failure process of rock[J]. Rock and Soil Mechanics, 2013, 34(8): 2355-2362.
[16] 贺振宇,郭佳奇,陈帆,等.隧道典型致灾构造及突水模式分析[J].中国地质灾害与防治学报,2017,28(2):97-107. HE Zhenyu, GUO Jiaqi, CHEN Fan, et al. Analysis of typical disaster-causing structure and water inrush model of tunnel[J]. Chinese Journal of Geological Hazard and Control, 2017, 28(2):97-107.
[17] JAGER J C. Shear failure of anisotropic rocks[J]. Geology Magazine, 1960, 97(1):65-72.
[18] JAGER J C. Friction of rocks and stability of rock slope[J]. Géotechnique, 1971, 21(2): 97-134.
[19] 黄书岭,丁秀丽,邬爱清,等.层状岩体多节理本构模型与试验验证[J].岩石力学与工程学报,2012,31(8):1627-1635. HUANG Shuling, DING Xiuli, WU Aiqing, et al.Study of multi-joint constitutive model of layered rockmass and experimental verification[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(8):1627-1635.
[20] 杨子汉,杨小礼,许敬叔,等.基于上限原理的两种岩溶隧道岩墙厚度计算方法[J].岩土力学,2017,38(3):801-809. YANG Zihan, YANG Xiaoli, XU Jingshu, et al. Two methods for rock wall thickness calculation in karst tunnels based on upper bound theorem[J].Rock and Soil Mechanics, 2017, 38(3):801-809.
[1] 王密田,王迎超,王楠,冯帅,李文豪,羊嘉杰. 降雨条件下断层隧道突水灾变演化规律[J]. 隧道与地下工程灾害防治, 2021, 3(4): 40-52.
[2] 仇文革, 黄海昀, 闫飞跃, 孙克国. 基于能量原理的上覆饱水砂层隧道突水灾变[J]. 隧道与地下工程灾害防治, 2021, 3(1): 1-11.
[3] 陈卫忠, 袁敬强, 黄世武, 杨磊. 富水风化花岗岩隧道突水突泥灾害防治技术[J]. 隧道与地下工程灾害防治, 2019, 1(3): 32-38.
[4] 鲜国,石少帅,赵勇,肖广智,喻渝,王俊涛,卜林. 强富水隧道下穿河段突涌水灾害综合防控方法研究与应用[J]. 隧道与地下工程灾害防治, 2019, 1(2): 74-82.
[5] 靖洪文,蔚立元,苏海健,顾金才,尹乾. 深部隧(巷)道围岩突水灾变演化试验系统研制及应用[J]. 隧道与地下工程灾害防治, 2019, 1(1): 102-110.
[1] QIAN Qihu. Scientific use of the urban underground space to construction the harmonious livable and beautiful city[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 1 -7 .
[2] DENG Mingjiang, LIU Bin. Challenges, countermeasures and development direction of geological forward-prospecting for TBM cluster tunneling in super-long tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 8 -19 .
[3] DING Xiuli, ZHANG Yuting, ZHANG Chuanjian, YAN Tianyou, HUANG Shuling. Review on countermeasures and their adaptability evaluation to tunnels crossing active faults[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 20 -35 .
[4] JIAO Yuyong, ZHANG Weishe, OU Guangzhao, ZOU Junpeng, CHEN Guanghui. Review of the evolution and mitigation of the water-inrush disaster in drilling-and-blasting excavated deep-buried tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 36 -46 .
[5] ZHANG Qingsong, ZHANG Lianzhen, LI Peng, FENG Xiao. New progress in grouting reinforcement theory of water-rich soft stratum in underground engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 47 -57 .
[6] XIA Kaiwen, XU Ying, CHEN Rong. Dynamic tests of rocks subjected to simulated deep underground environments[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 58 -75 .
[7] HONG Kairong. Study on rock breaking and wear of TBM hob in high-strength high-abrasion stratum[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 76 -85 .
[8] TAN Zhongsheng. Application experimental study of high-strength lattice girders with heat treatment in tunnel engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 86 -92 .
[9] CHEN Jianxun, LUO Yanbin. The stability of structure and its control technology for lager-span loess tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 93 -101 .
[10] JING Hongwen, YU Liyuan, SU Haijian, GU Jincai, YIN Qian. Development and application of catastrophic experiment system for water inrush in surrounding rock of deep tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 102 -110 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn