Please wait a minute...
 
隧道与地下工程灾害防治  2019, Vol. 1 Issue (1): 58-75    
  前沿综述 本期目录 | 过刊浏览 | 高级检索 |
考虑深部赋存条件的岩石动态破坏试验研究进展
夏开文1,2,徐颖1,陈荣3
1. 天津大学水利仿真与安全国家重点实验室, 天津 300072;2. 加拿大多伦多大学土木工程系, 多伦多 安大略 M5S 1A4;3. 国防科学技术大学文理学院, 湖南 长沙 410073
Dynamic tests of rocks subjected to simulated deep underground environments
XIA Kaiwen1,2, XU Ying1, CHEN Rong3
Dynamic tests of rocks subjected to simulated deepunderground environmentsXIA Kaiwen1, 2, XU Ying1, CHEN Rong3(1. State Key Laboratory of Hydraulic Engineering Simulation and Safety, School of Civil Engineering, Tianjin University, Tianjin 300072, China;
2. Department of Civil Engineering, University of Toronto, Toronto M5S1A4, Ontario, Canada;
3. College of Liberal Arts and Sciences, National University of Defense Technology, Changsha 410073, Hunan, China
下载:  PDF (19382KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 由于深部岩石处于高地应力、高地温、高渗透压的复杂地质环境下,现有的岩石力学理论已不能很好地解释深部岩石在开采、爆破或地震等动态荷载下的力学特性及破坏机理。近几十年来,国内外诸多学者对岩石动态力学开展了大量的室内试验研究,在岩石的动态压缩、拉伸、断裂和剪切等基本力学特性方面取得了丰硕的成果。由于深部岩石所处地质环境的复杂性,这些岩石动力学的成果有待扩充以考虑深部岩石的特殊赋存环境的影响。结合已有的动力学研究方法,考虑高温、含水、以及原位应力对岩石动态力学特性的影响,是深部岩石工程的关键问题。对考虑深部赋存条件的高应力、高温和含水条件下岩石动态力学特性研究现状进行系统的总结,从试验系统原理、分析方法和试验结果3个方面归纳针对深部赋存条件下岩石动态测试方法及其力学响应特性,并对深部岩石动态力学这一新兴的岩石力学研究方向进行展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
夏开文
徐颖
陈荣
关键词:  分离式霍普金森压杆  围压  温度  含水率  动态强度  动态断裂韧度    
Abstract: Deep underground rocks are in a complex geomechanical environment featuring high in situ stress, high temperature, and high osmotic pressure. The mechanical responses and failure mechanisms of deep rocks under dynamic loading due to excavation, blasting and earthquakes cannot be explained by traditional rock mechanics theories due to these factors. In recent decades, significant progress has been made in the characterization of dynamic properties of rocks, including compression, tension, fracture and shear. Due to the complex geomechanical environment of deep rocks, extension of these investigations to deep rocks is desirable by considering high in situ stress, high temperature and high osmotic pressure, which is a critical issue in deep rock engineering. This study reviewed existing rock dynamic studies considering such three factors, summarized the influence of these factors to dynamic responses of rocks. Experimental systems, data analytical methods, and experimental results were summarized. In the last, future directions in deep rock dynamics were proposed.
Key words:  split Hopkinson pressure bar    confinements    temperature    water content    dynamic strength    dynamic fracture toughness
收稿日期:  2018-05-16      发布日期:  2019-02-22     
中图分类号:  TD235  
  TU45  
基金资助: 国家自然科学基金资助项目(51479131);博士后面上基金资助项目(2017M621073);天津市青年基金资助项目(16JCQNJC07800)
作者简介:  夏开文(1973—),男,湖北孝感人,博士,教授,博士生导师,长江学者特聘教授,主要研究方向为脆性材料动态力学特性,震源机理与岩石动力灾害防治. E-mail:kaiwen@tju.edu.cn
引用本文:    
夏开文, 徐颖, 陈荣. 考虑深部赋存条件的岩石动态破坏试验研究进展[J]. 隧道与地下工程灾害防治, 2019, 1(1): 58-75.
XIA Kaiwen, XU Ying, CHEN Rong. Dynamic tests of rocks subjected to simulated deep underground environments. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 58-75.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2019/V1/I1/58
[1] 谢和平,高峰,鞠杨. 深部岩体力学研究与探索[J]. 岩石力学与工程学报, 2015, 34(11): 2161-2178. XIE Heping,GAO Feng,JU Yang. Research and development of rock mechanics in deep ground engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(11): 2161-2178.
[2] 钱七虎. 地下工程建设安全面临的挑战与对策[J]. 岩石力学与工程学报, 2012, 10: 1945-1956. QIAN Qihu. Challenges faced by underground projects construction safety and countermeasures[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(10): 1945-1956.
[3] ZHOU Hongwei, XIE Heping, ZUO Jianping. Developments in researches on mechanical behaviors of rocks under the condition of high ground pressure in the depths[J]. Advances in Mechanics, 2005, 35(1): 91-99.
[4] QIAN Qihu. The characteristic scientific phenomena of engineering response to deep rock mass and the implication of deepness[J]. Journal of East China Institute of Technology, 2004, 27(1): 1-5.
[5] ZHANG Q B, ZHAO Jian. A review of dynamic experimental techniques and mechanical behaviour of rock materials[J]. Rock Mechanics and Rock Engineering, 2014, 47(4): 1411-1478.
[6] XIA Kaiwen, YAO Wei. Dynamic rock tests using split Hopkinson(Kolsky)bar system-a review[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2015, 7(1): 27-59.
[7] ZHOU Yingxin, XIA Kaiwen, LI Xibin, et al. Suggested methods for determining the dynamic strength parameters and mode-I fracture toughness of rock materials[J]. International Journal of Rock Mechanics and Mining Sciences, 2012, 49(1): 105-112.
[8] 卢芳云,陈荣,林玉亮,等.霍普金森杆实验技术[M].北京:科学出版社, 2013.
[9] KOLSKY H. An investigation of the mechanical properties of materials at very high rates of loading[J]. Proceedings of the Royal Society of London Series: Mathematical and Physical Sciences, 1949, B62: 676-700.
[10] GRAY G T. Classic split-Hopkinson pressure bar testing[J]. ASM Handbook, Mechanical Testing and Evaluation, 2000, 8: 1093-1114.
[11] 夏开文,周传波. 岩石动态力学参数测试综述[J]. 工程爆破, 2014, 20(2): 43-53. XIA Kaiwen, ZHOU Chuanbo. Review of testing methods for dynamic rock mechanical properties[J]. Engineering Blasting, 2014, 20(2):43-53.
[12] 陈荣, 卢芳云, 林玉亮,等. 分离式Hopkinson压杆实验技术研究进展[J]. 力学进展, 2009, 39(5): 576-587. CHEN Rong, LU Fangyun, LIN Yuliang, et al. A critical review of split Hopkinson pressure bar technique[J]. Advances in Mechanics, 2009, 39(5): 576-587.
[13] FREW D J, FORRESTAL M J, CHEN W. Pulse shaping techniques for testing brittle materials with a split hopkinson pressure bar[J]. Experimental Mechanics, 2002, 42(1): 93-106.
[14] CHEN Rong, YAO Wei, LU F, et al. Evaluation of the stress equilibrium condition in axially constrained triaxial SHPB tests[J]. Experimental Mechanics, 2018, 58(3): 527-531.
[15] LI Xibing, LOK T S, ZHAO Jian, et al. Oscillation elimination in the Hopkinson bar apparatus and resultant complete dynamic stress-strain curves for rocks[J]. International Journal of Rock Mechanics and Mining Sciences, 2000, 37(7): 1055-1060.
[16] DAI Feng, HUANG Sheng, XIA Kaiwen, et al. Some fundamental issues in dynamic compression and tension tests of rocks using split Hopkinson pressure bar[J]. Rock Mechanics and Rock Engineering, 2010, 43(6): 657-666.
[17] WU Bangbiao, YAO Wei, XIA Kaiwen. An experimental study of dynamic tensile failure of rocks subjected to hydrostatic confinement[J]. Rock Mechanics and Rock Engineering, 2016, 49(10): 3855-3864.
[18] ZHU Jianbo, LIAO Zhiyi, TANG Chunan. Numerical SHPB tests of rocks under combined static and dynamic loading conditions with application to dynamic behavior of rocks under in situ stresses[J]. Rock Mechanics and Rock Engineering, 2016, 49(10): 3935-3946.
[19] 施绍裘, 王礼立. 材料在准一维应变下被动围压的SHPB 试验方法[J]. 实验力学, 2000, 15(4): 377-384. SHI Shaoqiu, WANG Lili. Passive confined pressure shpb test method for materials under quasi-one dimensional strain state[J]. Journal of Experimental Mechanics, 2000, 15(4): 377-384.
[20] LINDHOLM U S, YEAKLEY L M. High strain rate testing: tension and compression[J]. Experimental Mechanics, 1968, 8(1): 1-9.
[21] FREW Danny J, AKERS Stephen A, CHEN W, et al. Development of a dynamic triaxial Kolsky bar[J]. Measurement Science and Technology. 2010, 21(10): 105704.
[22] CHRISTENSEN R J, SWANSON S R, BROWN W S. Split-hopkinson-bar tests on rock under confining pressure[J]. Experimental Mechanics, 1972, 12(11): 508-513.
[23] LINDHOLM U S, YEAKLEY L M, NAGY A. Dynamic strength and fracture properties of dresser basalt[J]. International Journal of Rock Mechanics and Mining Sciences, 1974, 11(5): 181-191.
[24] MALVERN L E, JENKINS D A. Dynamic testing of laterally confined concrete[R]. Florida: Engineering & Service Laboratory, 1990
[25] 李夕兵, 周子龙, 叶州元,等. 岩石动静组合加载力学特性研究[J]. 岩石力学与工程学报, 2008, 27(7): 1387-1395. LI Xibing, ZHOU Zilong, YE Zhouyuan, et al. Study of rock mechanical characteristics under coupled static and dynamic loads[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(7): 1387-1395.
[26] GONG J C, MALVERN L E. Passively confined tests of axial dynamic compressive strength of concrete[J]. Experimental Mechanics, 1990, 30(1): 55-59.
[27] 夏开文, 姚伟. 预加载下岩石的动态力学性能研究[J].工程爆破, 2015, 21(6): 7-13. XIA Kaiwen,YAO Wei. Dynamic mechanical properties of rock under pre-load[J]. Engineering Blasting, 2015, 21(6): 7-13.
[28] WU Bangbiao, YAO Wei, XIA Kaiwen. An experimental study of dynamic tensile failure of rocks subjected to hydrostatic confinement[J]. Rock Mechanics and Rock Engineering, 2016, 49(10): 3855-3864.
[29] 牛勇,李克钢, 刘德克,等. 一维应力预加载下红砂岩冲击力学特性试验研究[J]. 实验力学, 2016, 31(3): 409-416. NIU Yong, LI Kegang, LIU Deke, et al. Experimental investigation on impact dynamic properties of red sandstone subject to one-dimentional stress preloading[J]. Journal of Experimental Mechanics. 2016, 31(3): 409-416.
[30] 牛勇, 李克钢, 李祥龙. 三维动静组合加载下岩石的破坏形态及力学性能研究[J]. 昆明理工大学学报(自然科学版), 2016, 41(4): 33-37,58. NIU Yong, LI Kegang, LI Xianglong. Study of failure mode and mechanical properties of rock subjected to 3d coupled static and dynamic loads[J]. Journal of Kunming University of Science and Technology(Natural Science Edition), 2016, 41(4): 33-37,58.
[31] GARY Gary, BAILLY Patrice. Behaviour of quasi-brittle material at high strain rate: experiment and modelling[J]. European Journal of Mechanics—A/Solids, 1998, 17(3): 403-420.
[32] 左宇军, 李夕兵, 唐春安,等. 二维动静组合加载下岩石破坏的试验研究[J]. 岩石力学与工程学报, 2006, 25(9): 1809-1820. ZUO Yujun, LI Xibing, TANG Chunan, et al. Experimental investigation on failure of rock subjected to 2d dynamic-static coupling loading[J].Chinese Journal of Rock Mechanics and Engineering, 2006, 25(9): 1809-1820.
[33] 宫凤强, 李夕兵, 刘希灵. 三维动静组合加载下岩石力学特性试验初探[J]. 岩石力学与工程学报, 2011,30(6): 1179-1190. GONG Fengqiang, LI Xibing, LIU Xiling. Preliminary experimental study of characteristics of rock subjected to 3d coupled static and dynamic loads[J]. Chinese Journal of Rock Mechanics and Engineering, 2011,30(6): 1179-1190.
[34] 牛勇. 三维静应力下红砂岩冲击力学特性试验研究 [D].昆明:昆明理工大学, 2017. NIU Yong. Experimental study on impact mechanics characteristics of red sandstone under three-dimensional static stress[D].Kunming:Kunming University of Science and Technology, 2017.
[35] CHEN Rong, XIA Kaiwen, LU F, et al. Dynamic tension tests of pre-stressed rocks[C] //3th Asia-Pacific Symposium on Blasting Techniques. Xiamen, China:[s.n.] , 2011.
[36] ZHOU Zilong, LI Xibing, ZOU Yang, et al. Dynamic Brazilian tests of granite under coupled static and dynamic loads[J]. Rock Mechanics and Rock Engineering, 2014, 47(2): 495-505.
[37] WU Bangbiao, CHEN Rong, XIA Kaiwen. Dynamic tensile failure of rocks under static pre-tension[J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 80: 12-18.
[38] 熊良宵, 虞利军. 高温作用下和高温后岩石力学特性的研究进展[J]. 地质灾害与环境保护, 2018(1): 76-82. XIONG Liangxiao,YU Lijun. Advances of mechanical properties of rock under high temperature and after high temperature[J].Journal of Geological Hazards and Environment Preservation, 2018(1): 76-82.
[39] HUANG Sheng, XIA Kaiwen. Effect of heat-treatment on the dynamic compressive strength of Longyou sandstone[J]. Engineering Geology, 2015, 191: 1-7.
[40] HOMAND-ETIENNE F, HOUPERT R. Thermally induced microcracking in granites: characterization and analysis[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1989, 26(2): 125-134.
[41] NASSERI M H B, SCHUBNEL A, YOUNG R P. Coupled evolutions of fracture toughness and elastic wave velocities at high crack density in thermally treated Westerly granite[J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(4): 601-616.
[42] PENG Z W, REDFERN S A T. Mechanical properties of quartz at the alpha-beta phase transition: implications for tectonic and seismic anomalies[J]. Geochemistry Geophysics Geosystems, 2013, 14(1): 18-28.
[43] 李夕兵, 尹土兵, 周子龙,等. 温压耦合作用下的粉砂岩动态力学特性试验研究[J]. 岩石力学与工程学报, 2010, 29(12): 2377-2384. LI Xibing, YIN Tubing, ZHOU Zilong, et al. Study of dynamic properties of siltstone under coupling effects of temperature and pressure[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(12): 2377-2384.
[44] FANG Qin, RUAN Zheng, ZHAI Chaochen, et al. Split Hopkinson pressure bar test and numerical analysis of salt rock under confining pressure and temperature[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(9): 1756-1765.
[45] LIU Shi, XU Jinyu. Study on dynamic characteristics of marble under impact loading and high temperature[J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 62: 51-58.
[46] 尹土兵. 考虑温度效应的岩石动力学行为研究[D]. 长沙:中南大学, 2012. YIN Tubing. Study on dynamic behavior of rocks considering thermal effect[D]. Changsha:Central South University, 2012.
[47] LIU Shi, XU Jinyu. Effect of strain rate on the dynamic compressive mechanical behaviors of rock material subjected to high temperatures[J]. Mechanics of Materials, 2015, 82: 28-38.
[48] 夏开文, 程经毅, 胡时胜. SHPB装置应用于测量高温动态力学性能的研究[J]. 实验力学, 1998(3): 32-38. XIA Kaiwen, CHEN Jingyi, HU Shisheng. Application of SHPB apparatus to the measurement of high temperature dynamic mechanical behavior of materials[J].Journal of Experimental Mechanics, 1998(3): 32-38.
[49] YIN Tubing, LI Xibing, CAO W Z, et al. Effects of thermal treatment on tensile strength of laurentian granite using Brazilian test[J]. Rock Mechanics and Rock Engineering, 2015, 48(6): 2213-2223.
[50] YAO Wei, XU Ying, WANG Wei, et al. Dependence of dynamic tensile strength of longyou sandstone on heat-treatment temperature and loading rate[J]. Rock Mechanics and Rock Engineering, 2015, 49(10): 3899-3915.
[51] WANG Peng, XU Jinyu, FANG Xinyu, et al. Dynamic splitting tensile behaviors of red-sandstone subjected to repeated thermal shocks: deterioration and micro-mechanism[J]. Engineering Geology, 2017, 223: 1-10.
[52] ZHANG Z X, YU J, KOU S Q, et al. Effects of high temperatures on dynamic rock fracture[J]. International Journal of Rock Mechanics and Mining Sciences, 2001, 38(2): 211-225.
[53] YIN Tubing, LI Xibing, XIA Kaiwen., et al. Effect of thermal treatment on the dynamic fracture toughness of Laurentian granite[J]. Rock Mechanics and Rock Engineering, 2012, 45(6): 1087-1094.
[54] 李帅, 朱万成, 于永军, 等. 动态扰动对不同含水率砂岩应力松弛影响的研究[J]. 东北大学学报(自然科学版), 2017, 38(9): 1330-1334. LI Shuai, ZHU Wancheng,YU Yongjun, et al. Study on the stress relaxation of sandstone with different moisture contents caused by dynamic distrubance[J]. Journal of Northeastern University(Natural Science), 2017,38(9): 1330-1334.
[55] 腾俊洋, 唐建新, 张宇宁, 等. 单轴压缩下层状含水页岩损伤破坏过程及特征[J]. 岩土力学, 2017(6): 1629-1638,1646. TENG Junyang, TANG Jianxin, ZHANG Yuning,et al. Damage process and characteristics of layered water-bearing shale under uniaxial compression[J]. Rock and Soil Mechanics, 2017(6): 1629-1638, 1646.
[56] ZHOU Zilong, CAI Xin, ZHAO Yuan, et al. Strength characteristics of dry and saturated rock at different strain rates[J]. Transactions of Nonferrous Metals Society of China, 2016, 26(7): 1919-1925.
[57] 邓华锋, 张吟钗, 李建林, 等. 含水率对层状砂岩劈裂抗拉强度影响研究[J]. 岩石力学与工程学报, 2017, 36(11): 2778-2787. DENG Huafeng, ZHANG Yinchai, LI Jianlin, et al. Effect of moisture content on splitting tensile strength of layered sandstone[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(11): 2778-2787.
[58] 王浩宇, 许金余, 王鹏, 等. 含水岩石动态抗压强度与微观机制[J]. 空军工程大学学报(自然科学版), 2016, 17(4): 107-111. WANG Haoyu, XU Jinyu,WANG Peng, et al. A study of dynamic compresive strength and microscopic mtchanism on water-bearing rock[J]. Journal of Air Fouce Engineering Universitu(Natrnal Science Edition), 2016, 17(4): 107-111.
[59] HUANG Sheng, XIA Kaiwen, YAN Fei, et al. An experimental study of the rate dependence of tensile strength softening of Longyou sandstone[J]. Rock Mechanics and Rock Engineering, 2010, 43(6): 677-683.
[60] LI Z, REDDISH D J. The effect of groundwater recharge on broken rocks[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(1): 280-285.
[61] OGATA Yuji, JUNG WooJin, KUBOTA Shiro, et al. Effect of the strain rate and water saturation for the dynamic tensile strength of rocks[C] // Proceedings of the 1st International Symposium on Explosion, Shock Wave and Hypervelocity Phenomena(ESHP Symposium). Kumamoto, Japan:[s.n.] , 2004.
[62] 王斌, 李夕兵. 单轴荷载下饱水岩石静态和动态抗压强度的细观力学分析[J]. 爆炸与冲击, 2012,32(4): 423-431. WANG Bin, LI Xibing. Mesomechanics analysis of static compressive strength and dynamic compressive strength of water-saturated rock under uniaxial load [J]. Explosion and Shock Waves, 2012, 32(4): 423-431.
[63] 张军. 围压条件下含水砂岩的动态力学性能试验研究[D].焦作:河南理工大学, 2016. ZHANG Jun. Experimental study on dynamic mechanical properties of water content sandstone under confining pressure[D].Jiaozuo:Henan Polytechnic University, 2016.
[64] 赵红鹤. 含水砂岩围压条件下的力学性能试验研究 [D].焦作:河南理工大学,2014. ZHAO Honghe. Experimental study on mechanical properties of water content sandstone under confining pressure[D].Jiaozuo:Henan Polytechnic University, 2014.
[65] 袁璞, 马瑞秋. 不同含水状态下煤矿砂岩SHPB试验与分析[J]. 岩石力学与工程学报, 2015(增刊1): 2888-2893. YUAN Pu, MA Ruiqiu. Split Hopkinson pressure bar tests and analysis of coalmine sandstone with various moisture contents[J]. Chinese Journal of Rock Mechanics and Engineering, 2015(Suppl.1): 2888-2893.
[66] 闻名, 陈震, 许金余, 等. 不同含水率红砂岩静动态劈拉试验及细观分析[J]. 地下空间与工程学报, 2017, 13(1): 86-92. WEN Ming, CHEN Zhen, XU Jinyu.,et al. Static-dynamic split tensile tests and micro analysis on red-sandstone with different moisture contents[J]. Chinese Journal of Underground Space and Engineering, 2017, 13(1): 86-92.
[67] 楼沩涛. 干燥和水饱和花岗岩的动态断裂特性[J]. 爆炸与冲击, 1994,14(3): 249-254. LOU Weitao. Dynamic fracture behaviour of dry and waterlogged granite [J]. Explosion and Shock Waves, 1994, 14(3): 249-254.
[68] 王建国, 杨阳, 郭延辉, 等. 高应变率下饱水花岗岩动力学特性的低温效应[J]. 岩土力学, 2017(增刊2): 163-169. WANG Jianguo, YANG Yang, GUO Yanhui, et al. Low temperature effect of saturated granite on dynamic characteristics at high strain rates[J]. Rock and Soil Mechanics, 2017(Suppl.2): 163-169.
[69] PETROV Yuri V, SMIRNOV Ivan V, VOLKOV Grigory A, et al. Dynamic failure of dry and fully saturated limestone samples based on incubation time concept[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2017, 9(1): 125-134.
[1] 宋瑞霞, 赵永虎, 米维军, 韩侃, 蒋育华. 帷幕注浆在富水大跨度黄土隧道中的应用[J]. 隧道与地下工程灾害防治, 2021, 3(2): 43-48.
[2] 蔡燕燕,朱要亮,彭健,刘荣标,黄少强,胡润民,俞缙. 地铁装配式外置槽道火灾下温度分布与温度应力数值模拟[J]. 隧道与地下工程灾害防治, 2019, 1(3): 87-95.
[1] QIAN Qihu. Scientific use of the urban underground space to construction the harmonious livable and beautiful city[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 1 -7 .
[2] DENG Mingjiang, LIU Bin. Challenges, countermeasures and development direction of geological forward-prospecting for TBM cluster tunneling in super-long tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 8 -19 .
[3] DING Xiuli, ZHANG Yuting, ZHANG Chuanjian, YAN Tianyou, HUANG Shuling. Review on countermeasures and their adaptability evaluation to tunnels crossing active faults[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 20 -35 .
[4] JIAO Yuyong, ZHANG Weishe, OU Guangzhao, ZOU Junpeng, CHEN Guanghui. Review of the evolution and mitigation of the water-inrush disaster in drilling-and-blasting excavated deep-buried tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 36 -46 .
[5] ZHANG Qingsong, ZHANG Lianzhen, LI Peng, FENG Xiao. New progress in grouting reinforcement theory of water-rich soft stratum in underground engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 47 -57 .
[6] HONG Kairong. Study on rock breaking and wear of TBM hob in high-strength high-abrasion stratum[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 76 -85 .
[7] TAN Zhongsheng. Application experimental study of high-strength lattice girders with heat treatment in tunnel engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 86 -92 .
[8] CHEN Jianxun, LUO Yanbin. The stability of structure and its control technology for lager-span loess tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 93 -101 .
[9] JING Hongwen, YU Liyuan, SU Haijian, GU Jincai, YIN Qian. Development and application of catastrophic experiment system for water inrush in surrounding rock of deep tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 102 -110 .
[10] LI Tianbin, WU Chendi, MENG Lubo, GAO Meiben. Study on dynamic analysis and comprehensive warning method of tunnel collapse[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 111 -118 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn