Please wait a minute...
 
隧道与地下工程灾害防治  2019, Vol. 1 Issue (1): 47-57    
  前沿综述 本期目录 | 过刊浏览 | 高级检索 |
地下工程富水软弱地层注浆加固理论研究新进展
张庆松1,张连震1,2,李鹏1,3,冯啸1
1. 山东大学岩土与结构工程研究中心, 山东 济南 250061;2. 中国石油大学(华东)储运与建筑工程学院, 山东 青岛 266580;3. 中国海洋大学工程学院, 山东 青岛 266071
New progress in grouting reinforcement theory of water-rich soft stratum in underground engineering
ZHANG Qingsong1, ZHANG Lianzhen1,2, LI Peng1,3, FENG Xiao1
New progress in grouting reinforcement theory of water-richsoft stratum in underground engineeringZHANG Qingsong1, ZHANG Lianzhen1, 2, LI Peng1, 3, FENG Xiao1(1.Geotechnical and Structural Engineering Research Center, Shandong University, Jinan 250061, Shandong, China;
2.College of Pipeline and Civil Engineering, China University of Petroleum, Qingdao 266580, Shandong, China;
3. College of Engineering, Ocean University of China, Qingdao 266071, Shandong, China
下载:  PDF (7812KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 目前我国已成为世界公认的隧道与地下工程建设规模和难度最大的国家,断层破碎带、富水砂层等富水软弱地层已经成为地下工程修建过程中最为常见的不良地质体,注浆是治理富水软弱地层的主要方法。结合本课题组研究特色,介绍本课题组在富水软弱地层注浆加固理论、模拟试验及注浆控制方法等方面的最新研究进展。注浆加固理论方面,考虑劈裂注浆加固体的分层特征与空间衰减特征,综合注浆加固后浆脉、被压密地层及原状地层的性能参数及空间展布形态,建立劈裂注浆加固效果定量计算方法;考虑砂层渗透注浆过程中渗滤效应所造成的水泥颗粒滞留空间不均匀性,针对平面径向流渗透注浆形式建立注浆加固体强度的定量计算公式,揭示注浆加固强度的空间衰减特征。注浆加固模拟试验方面,研发隧道突水突泥灾后注浆模拟试验系统,总结突泥塌腔及软弱破碎区域优先充填扩散规律和封闭空间加固区域内多序次劈裂注浆扩散规律;研发可视化劈裂注浆模拟试验系统,揭示注浆过程中劈裂通道形态随时间变化规律,获得试验条件下的劈裂-压密注浆影响范围。注浆控制方法方面,针对泥质断层破碎带及富水砂层分别提出针对性的注浆控制方法,可为富水软弱地层注浆工程实践提供有效指导。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张庆松
张连震
李鹏
冯啸
关键词:  地下工程  断层破碎带  富水砂层  注浆加固  模拟试验  注浆控制方法    
Abstract: At present, China is the country with the greatest scale and difficulty in the construction of tunnels and underground projects. Fault fracture zone, water-rich sand strata and other water-rich soft strata have become the most common unfavorable geologic bodies in the construction of underground engineering. Grouting is the main method to treat water-rich soft strata. Based on the characteristics of the project team, the latest research progress in grouting reinforcement theory, simulation test and grouting control method in water-rich soft strata was introduced. In terms of grouting reinforcement theory, considering the layered characteristics and space attenuation characteristics of reinforced soil, a quantitative method for calculating the reinforcement effect of splitting grouting was established by synthesizing the performance parameters and spatial distribution of grouting veins, compacted strata and undisturbed strata. What's more, considering the inhomogeneity of the retention space of cement particles caused by filtration effect in sand layer, a quantitative strength calculation method of grouting reinforced composition ground was established for the permeation grouting form of plane radial flow. On this basis, the spatial attenuation characteristics of grouting strength were revealed. In the aspect of simulation test of grouting reinforcement, a simulation test system for grouting after water inrush and mud inrush of tunnel was developed. The rule of priority filling and diffusion in cavities and soft broken areas and the law of multi-sequence split grouting diffusion in closed space strengthened area were summarized. A visual simulation test system for splitting grouting was developed, which could reveal the variation rule of split channel shape with time during grouting. The influence range of splitting and compaction grouting under test conditions was obtained. In terms of grouting control methods, the corresponding grouting control methods for muddy fault fracture zone and water-rich sand layer were put forward respectively, which could provide effective guidance for grouting engineering practice in water-rich weak stratum.
Key words:  underground engineering    fault fracture zone    water-rich sand stratum    grouting reinforcement    simulation test    grouting control methods
收稿日期:  2018-05-24      发布日期:  2019-02-22     
中图分类号:  TU45  
基金资助: 国家重点研发计划资助项目(2016YFC0801604);国家自然科学基金重点资助项目(U1706223);国家自然科学基金面上资助项目(51779133)
作者简介:  张庆松(1970— ),男,山东费县人,博士,教授,博士生导师,长江学者特聘教授,教育部新世纪优秀人才支撑计划获得者,主要研究方向为隧道与地下工程灾害防治. E-mail:zhangqingsong@sdu.edu.cn
引用本文:    
张庆松, 张连震, 李鹏, 冯啸. 地下工程富水软弱地层注浆加固理论研究新进展[J]. 隧道与地下工程灾害防治, 2019, 1(1): 47-57.
ZHANG Qingsong, ZHANG Lianzhen, LI Peng, FENG Xiao. New progress in grouting reinforcement theory of water-rich soft stratum in underground engineering. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 47-57.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2019/V1/I1/47
[1] 张成平,韩凯航,张顶立,等. 城市软弱围岩隧道塌方特征及演化规律试验研究[J]. 岩石力学与工程学报, 2014, 33(12): 2433-2442. ZHANG Chengping, HAN Kaihang, ZHANG Dingli, et al. Test study of collapse characteristics of tunnels in soft ground in urban areas[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(12): 2433-2442.
[2] 周宗青,李术才,李利平,等. 浅埋隧道塌方地质灾害成因及风险控制[J]. 岩土力学, 2013, 34(5): 1376-1382. ZHOU Zongqing, LI Shucai, LI Liping, et al. Causes of geological hazards and risk control of collapse in shallow tunnels[J]. Rock and Soil Mechanics, 2013, 34(5): 1376-1382.
[3] 张会刚,张广泽,毛邦燕. 沪昆客专小高山隧道突水突泥及致灾原因探析[J]. 铁道工程学报, 2016, 33(8): 66-70. ZHANG Huigang, ZHANG Guangze, MAO Bangyan, et al. Mechanism analysis and water and mud breakout in the Xiaogao Mountain Tunnel in Shanghai-Kunming passenger dedicated railway[J]. Journal of Railway Engineering Society, 2016, 33(8): 66-70.
[4] 程雪松,郑刚,邓楚涵,等. 基坑悬臂排桩支护局部失效引发连续破坏机理研究[J]. 岩土工程学报, 2015, 37(7): 1249-1263. CHENG Xuesong, ZHENG Gang, DENG Chuhan, et al. Mechanism of progressive collapse induced by partial failure of cantilever contiguous retaining piles[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(7): 1249-1263.
[5] LI S C, LIU R T, ZHANG Q S, et al. Protection against water or mud inrush in tunnels by grouting: a review[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2016, 8(5): 753-766.
[6] 邝键政,昝月稳,王杰,等. 岩土工程注浆理论与工程实例[M]. 北京:科学出版社,2001.
[7] 张庆松, 韩伟伟, 李术才, 等. 灰岩角砾岩破碎带涌水综合注浆治理[J]. 岩石力学与工程学报, 2012, 31(12): 2412-2419. ZHANG Qingsong, HAN Weiwei, LI Shucai, et al. Comprehensive grouting treatment for water gushing analysis in limestone breccias fracture zone[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(12): 2412-2419.
[8] 李术才,张伟杰,张庆松,等. 富水断裂带优势劈裂注浆机制及注浆控制方法研究[J]. 岩土力学,2014,35(3):745-751. LI Shucai, ZHANG Weijie, ZHANG Qingsong, et al. Research on advantage-fracture grouting mechanism and controlled grouting method in water-rich fault zone[J]. Rock and Soil Mechanics, 2014, 35(3):745-751.
[9] 张伟杰. 隧道工程富水断层破碎带注浆加固机制及应用研究[D]. 济南:山东大学,2014. ZHANG Weijie. Mechanism of grouting reinforcement of water-rich fault fractured zone and its application in tunnel engineering[D]. Jinan:Shandong University, 2014.
[10] 邹金锋,李 亮,杨小礼. 劈裂注浆扩散半径及压力衰减分析[J]. 水利学报,2006,37(3):314-319. ZOU Jinfeng, LI Liang, YANG Xiaoli, et al. Penetration radius and pressure attenuation law in fracturing grouting[J]. Journal of Hydraulic Engineering, 2006, 37(3):314-319.
[11] 张忠苗,邹健. 桩底劈裂注浆扩散半径和注浆压力研究[J]. 岩土工程学报,2008,30(2):181-184. ZHANG Zhongmiao, ZOU Jian. Penetration radius and grouting pressure in fracture grouting[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(2):181-184.
[12] 张庆松,张连震,刘人太,等. 基于“浆-土”界面应力耦合效应的劈裂注浆理论研究[J]. 岩土工程学报,2016,38(2):323-330. ZHANG Qingsong, ZHANG Lianzhen, LIU Rentai, et al. Split grouting theory based on slurry-soil coupling effects[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(2):323-330.
[13] 张连震. 地铁穿越砂层注浆扩散与加固机制及工程应用[D]. 济南:山东大学,2017. ZHANG Lianzhen. Study on penetration and reinforcement mechanism of grouting in sand layer disclosed by subway tunnel and its application[D]. Jinan:Shandong University, 2017.
[14] 张连震,李志鹏,张庆松,等. 基于土体非线性压密效应的劈裂注浆机制分析[J]. 岩石力学与工程学报,2016,35(7):1483-1493. ZHANG Lianzhen, LI Zhipeng, ZHANG Qingsong, et al. Split grouting mechanism based on nonlinear characteristics of compression process of soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(7):1483-1493.
[15] 李鹏,张庆松,张霄,等. 非均质断层介质单双液加固特性对比[J]. 应用基础与工程科学学报,2016,24(4):840-852. LI Peng,ZHANG Qingsong,ZHANG Xiao,et al. Comparison research on reinforcement characteristics of cement slurry and C-S slurry for inhomogeneous fault medium[J]. Journal of Basic Science and Engineering, 2016, 24(4):840-852.
[16] 张庆松,李鹏,张霄,等. 隧道断层泥注浆加固机制模型试验研究[J]. 岩石力学与工程学报, 2015,34(5):924-934. ZHANG Qingsong, LI Peng, ZHANG Xiao, et al. Model test of grouting strengthening mechanism for Fault gouge of tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(5):924-934.
[17] 张伟杰,李术才,魏久传,等. 富水破碎岩体帷幕注浆模型试验研究[J]. 岩土工程学报,2015,37(9):1627-1634. ZHANG Weijie, LI Shucai, WEI Jiuchuan, et al. Model tests on curtain grouting in water-rich broken rock mass[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(9):1627-1634.
[18] 杨志全, 侯克鹏, 郭婷婷, 等. 基于考虑时变性的宾汉姆流体的渗透注浆机制研究[J]. 四川大学学报(工程科学版), 2011, 43(增刊1): 67-72. YANG Zhiquan, HOU Kepeng, GUO Tingting, et al. Study on penetration grouting mechanism based on Bingham fluid of time-dependent behavior[J]. Journal of Sichuan University(Engineering Science Edition), 2011, 43(Suppl.1): 67-72.
[19] 杨秀竹,雷金山,夏力农,等. 幂律型浆液扩散半径研究[J]. 岩土力学, 2005, 26(11): 112-115. YANG Xiuzhu, LEI Jinshan, XIA Linong, et al. Study on grouting diffusion radius of exponential fluids[J]. Rock and Soil Mechanics, 2005, 26(11): 112-115.
[20] 叶飞, 苟长飞, 刘燕鹏, 等. 盾构隧道壁后注浆浆液时变半球面扩散模型[J]. 同济大学学报(自然科学版), 2012, 40(12): 1789-1794. YE Fei, GOU Changfei, LIU Yanpeng, et al. Half-spherical surface diffusion model of shield tunnel back-filled grouts[J]. Journal of Tongji University(Natural Science), 2012, 40(12): 1789-1794.
[21] 张连震,张庆松,刘人太,等. 考虑浆液黏度时空变化的速凝浆液渗透注浆扩散机制研究[J]. 岩土力学, 2017, 38(2): 443-452. ZHANG Lianzhen, ZHANG Qingsong, LIU Rentai, et al. Penetration grouting mechanism of quick setting slurry considering spatiotemporal variation of viscosity[J]. Rock and Soil Mechanics, 2017, 38(2): 443-452.
[22] 叶飞,孙昌海,毛家骅,等. 考虑黏度时效性与空间效应的C-S双液浆盾构隧道管片注浆机理分析[J]. 中国公路学报, 2017, 30(8): 49-56. YE Fei, SUN Changhai, MAO Jiahua, et al. Analysis on grouting mechanism for shield tunnel segment by cement and sodium silicate mixed grout in consideration of time-dependency and space effect of viscosity[J]. China Journal of Highway and Transport, 2017, 30(8): 49-56.
[23] SAADA Z, CANOU J, DORMIEUX L, et al. Modelling of cement suspension flow in granular porous media[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2005, 29(7): 691-711.
[24] YOON J, MOHTAR C S E. A filtration model for evaluating maximum penetration distance of bentonite grout through granular soils[J]. Computers and Geotechnics, 2015(65): 291-301.
[25] 李鹏. 泥质断层劈裂注浆全过程力学机理与控制方法研究[D]. 济南:山东大学,2017. LI Peng. Mechanical mechanism and control method of fracturing grouting for argillaceous fault[D]. Jinan: Shandong University, 2017.
[26] BOUCHELAGHEM F, BENHAMIDA A, DUMONTET H. Mechanical damage behaviour of an injected sand by periodic homogeni-zation method[J]. Computational Materials Science, 2007, 38(3): 473-481.
[27] 钱自卫,姜振泉,曹丽文,等. 弱胶结孔隙介质渗透注浆模型试验研究[J]. 岩土力学, 2013, 34(1): 139-143. QIAN Ziwei, JIANG Zhenquan, CAO Liwen, et al. Experiment study of penetration grouting model for weakly cemented porous media[J]. Rock and Soil Mechanics, 2013, 34(1): 139-143.
[28] 中华人民共和国建设部. 普通混凝土力学性能试验方法标准:GB/T 50081—2002[S]. 北京:中国建筑工业出版社, 2002.
[29] 中华人民共和国住房和城乡建设部. 工程岩体试验方法标准:GB/T 50266—2013[S]. 北京:中国计划出版社, 2013.
[1] 王建圣, 蒋志斌, 李丽超. 隧道岩体贯通节理面注浆加固力学响应特征[J]. 隧道与地下工程灾害防治, 2023, 5(2): 80-88.
[2] 孙文斌, 曹震博, 董法旭. 断层破碎带岩石裂隙渗透性的表征方法[J]. 隧道与地下工程灾害防治, 2023, 5(1): 1-7.
[3] 李鹏飞,刘宏翔,赵勇,刘建友,王帆. 隧道穿越断层破碎带防突水最小安全厚度及其影响因素[J]. 隧道与地下工程灾害防治, 2020, 2(3): 77-84.
[4] 袁亮,薛阳,王汉鹏,马正卫,余国锋,康建宏,任波. 煤与瓦斯突出物理模拟试验研究新进展[J]. 隧道与地下工程灾害防治, 2020, 2(1): 1-10.
[5] 戎晓力,文祝,郝以庆,卢浩,熊自明. 基于可能性理论的地下工程风险裕度模型[J]. 隧道与地下工程灾害防治, 2019, 1(2): 83-91.
[1] QIAN Qihu. Scientific use of the urban underground space to construction the harmonious livable and beautiful city[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 1 -7 .
[2] DENG Mingjiang, LIU Bin. Challenges, countermeasures and development direction of geological forward-prospecting for TBM cluster tunneling in super-long tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 8 -19 .
[3] DING Xiuli, ZHANG Yuting, ZHANG Chuanjian, YAN Tianyou, HUANG Shuling. Review on countermeasures and their adaptability evaluation to tunnels crossing active faults[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 20 -35 .
[4] JIAO Yuyong, ZHANG Weishe, OU Guangzhao, ZOU Junpeng, CHEN Guanghui. Review of the evolution and mitigation of the water-inrush disaster in drilling-and-blasting excavated deep-buried tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 36 -46 .
[5] XIA Kaiwen, XU Ying, CHEN Rong. Dynamic tests of rocks subjected to simulated deep underground environments[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 58 -75 .
[6] HONG Kairong. Study on rock breaking and wear of TBM hob in high-strength high-abrasion stratum[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 76 -85 .
[7] TAN Zhongsheng. Application experimental study of high-strength lattice girders with heat treatment in tunnel engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 86 -92 .
[8] CHEN Jianxun, LUO Yanbin. The stability of structure and its control technology for lager-span loess tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 93 -101 .
[9] JING Hongwen, YU Liyuan, SU Haijian, GU Jincai, YIN Qian. Development and application of catastrophic experiment system for water inrush in surrounding rock of deep tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 102 -110 .
[10] LI Tianbin, WU Chendi, MENG Lubo, GAO Meiben. Study on dynamic analysis and comprehensive warning method of tunnel collapse[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 111 -118 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn