Please wait a minute...
 
隧道与地下工程灾害防治  2019, Vol. 1 Issue (1): 86-92    
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
热处理高强钢筋格栅在隧道工程应用的试验研究
谭忠盛
北京交通大学土木建筑工程学院, 北京 100044
Application experimental study of high-strength lattice girders with heat treatment in tunnel engineering
TAN Zhongsheng
Application experimental study of high-strength lattice girders with heat treatment in tunnel engineeringTAN Zhongsheng(School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China
下载:  PDF (7602KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 热处理高强钢筋具有高强度、延展性能优越、强屈比高、焊接与冷弯性能优越等诸多优点,能够有效降低工程中钢筋的用量、提高工程质量,在国内外许多工程中得到了成功的应用,但是在隧道工程中的应用刚刚起步。结合铁路、公路隧道工程建设,开展热处理高强钢筋格栅应用的现场试验研究,对比分析高强钢筋格栅与原设计的I20b型钢拱架的支护性能。试验结果表明,格栅拱架试验段相比I20b型钢拱架试验段的沉降收敛减少约7%~30%,围岩压力相差不多,但格栅拱架应力略高。由于格栅与混凝土的粘结性更好,格栅+喷混凝土的最终承载能力大于型钢+喷混凝土,且格栅拱架的钢材用量比I20b型钢拱架的用钢量节约36%,具有显著的经济和社会效益。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
谭忠盛
关键词:  隧道工程  格栅拱架  型钢拱架  高强钢筋格栅  现场试验    
Abstract: The heat treated-high strength steel bar have many advantages,such as high strength,good ductility,high strength ratio, good welding and cold bending performance, etc. It could effectively reduce the amount of steel bars and improve the project quality, and was successfully applied in civil engineering at home and abroad. However, the application of heat treated-high strength steel bar has limited study in the tunnel engineering. Based on the railway and highway tunnel construction, field tests of heat treatment high-strength lattice girders was carried out. By comparing the results, the supporting performance of high-strength lattice girders and I20b steel was analyzed. The result showed that settlement and convergence between high-strength lattice girders test section and I20b steel was reduced 7%~30%, and the surrounding rock pressure was close. But the steel stress of high-strength lattice girders was higher than I20b steel. Because of better combination between lattice girders and shotcrete, high-strength lattice girders ultimate bearing capacity was bigger than I20b steel, and steel material consumption of high-strength lattice girders was about 36% less than I20b steel. So high-strength lattice girders had good social and economic efficiency.
Key words:  tunnel engineering    lattice girders    steel arch    high-strength lattice girders    field test
收稿日期:  2018-11-27                     发布日期:  2019-02-22      期的出版日期:  2019-01-20
中图分类号:  U451  
作者简介:  谭忠盛( 1963— ),男,广西梧州人,博士,教授,博士生导师,主要研究方向为隧道及地下工程. E-mail:zhshtan@bjtu.edu.cn
引用本文:    
谭忠盛. 热处理高强钢筋格栅在隧道工程应用的试验研究[J]. 隧道与地下工程灾害防治, 2019, 1(1): 86-92.
TAN Zhongsheng. Application experimental study of high-strength lattice girders with heat treatment in tunnel engineering. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 86-92.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2019/V1/I1/86
[1] 王焕. 大直径泥水盾构穿越无加固条件沉降敏感带扰动控制技术研究[J]. 隧道与地下工程灾害防治, 2019, 1(2): 107-113.
[2] 陈建勋,罗彦斌. 大跨度黄土公路隧道结构稳定性及控制技术研究[J]. 隧道与地下工程灾害防治, 2019, 1(1): 93-101.
[3] 李天斌,巫晨笛,孟陆波,高美奔. 隧道坍方动态分析与综合预警方法研究[J]. 隧道与地下工程灾害防治, 2019, 1(1): 111-118.
[1] QIAN Qihu. Scientific use of the urban underground space to construction the harmonious livable and beautiful city[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 1 -7 .
[2] WANG Zhechao, LI Wei, LIU Jie, GUO Jiafan, ZHANG Yupeng. A review on state-of-the-art of underground gas storage and causes of typical accidents[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -10 .
[3] LIU Ning, ZHANG Chunsheng, ZHANG Chuanqing, CHU Weijiang, CHEN Pingzhi, . Analysis on lining structure safety of large hydraulic tunnel in deep-buried soft rock[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -8 .
[4] GONG Qiuming, WU Fan, YIN Lijun. Study on the rock mixed ground under disc cutter by linear cutting tests[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -11 .
[5] YAN Baoxu, ZHU Wancheng, HOU Chen. Theoretical analysis of maximum exposure height of the backfill when mining underground adjacent stope[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -11 .
[6] FU Helin, HUANG Zhen, WANG Hui, ZHANG Jiabing, SHI Yue. Accident analysis and management of metro safety[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -12 .
[7] JIAO Yuyong, ZHANG Weishe, OU Guangzhao, ZOU Junpeng, CHEN Guanghui. Review of the evolution and mitigation of the water-inrush disaster in drilling-and-blasting excavated deep-buried tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 36 -46 .
[8] HONG Kairong. Study on rock breaking and wear of tbm hob in high-strength high-abrasion stratum[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 76 -85 .
[9] RONG Xiaoli, WEN Zhu, HAO Yiqing, LU Hao, XIONG Ziming. Risk margin model of underground engineering based on possibility theory[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -10 .
[10] JING Hongwen, YU Liyuan, SU Haijian, GU jincai, Yin Qian. Development and application of catastrophic experiment system for water inrush in surrounding rock of deep tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 102 -110 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn