Please wait a minute...
 
隧道与地下工程灾害防治  2019, Vol. 1 Issue (1): 93-101    
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
大跨度黄土公路隧道结构稳定性及控制技术研究
陈建勋,罗彦斌
长安大学公路学院桥梁与隧道陕西省重点实验室, 陕西 西安 710064
The stability of structure and its control technology for lager-span loess tunnel
CHEN Jianxun, LUO Yanbin
The stability of structure and its control technology forlager-span loess tunnelCHEN Jianxun, LUO Yanbin(Key Laboratory for Bridge and Tunnel of Shaanxi Province, School of Highway Engineering, Changan University, Xian 710064, Shaanxi, China
下载:  PDF (11941KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 大跨度黄土隧道施工时易产生地表开裂、沉降变形、支护侵限、塌方等现象,建设难度极大。以目前世界上开挖跨度最大的高速公路黄土隧道——墩梁隧道为工程依托,采用现场实测、理论分析和数值模拟相结合的方法,通过对大跨度黄土公路隧道变形规律进行分析,结合单洞两车道黄土隧道支护设计相关研究成果和工程实践经验,提出大跨度黄土隧道初期支护结构型式,并对其结构受力和稳定性开展研究。研究表明:采用三台阶法施工时,上台阶处收敛经历4个阶段,最大开挖线处收敛经历3个阶段。上台阶处收敛速率比最大开挖线处的收敛速率快,最大开挖线处的最终收敛值约为上台阶处的3倍左右。沉降曲线随着与掌子面距离增大,沉降值持续增大,增速放缓。距掌子面1D、1D~2D、2D~3D和3D~4D范围内,各测点产生的沉降值分别为最大沉降值的49%、23%、12% 和 6%。大跨度黄土隧道采用“钢架+喷射混凝土+钢筋网+锁脚锚杆(管)+纵向连接筋”组合结构能够满足隧道结构稳定。提出洞口段施工采用双侧壁导坑法,洞身段施工采用三台阶留核心土法,浅埋段地基承载力较低的隧底采用钢管注浆加固的大跨度黄土隧道稳定控制技术。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈建勋
罗彦斌
关键词:  隧道工程  大跨度黄土隧道  变形规律  结构稳定性  控制技术    
Abstract: During the construction of large-span loess tunnel, surface cracking, settlement deformation, support invasion and landslides are easy to occur, which makes the construction of large-span loess tunnel extremely difficult. Based on the pier-beam tunnel, the largest-span highway loess tunnel excavated in the world at present, the combination of field measurement, theoretical analysis and numerical simulation was used to analyze the deformation law of large-span loess highway tunnel. Combined with the relevant research results and engineering practice experience of support design of single loess tunnel and two-lane loess tunnel, the structure type of the initial support was put forward, and structural force and stability of initial support were studied. The results showed that the convergence at the upper step and the maximum excavation line could be divided into four stages when the three-step method was adopted. The convergence rate at the upper step was faster than that at the maximum excavation line, and the final convergence value at the maximum excavation line was about three times of that at the upper step. As the distance between the settlement curve and the face increases, the settlement value increased continuously and the growth rate slowed down. Within the range of 1D, 1D to 2D, 2D to 3D and 3D to 4D from the palm surface, the settlement values generated by each measuring point were 49%, 23%, 12% and 6% of the maximum settlement values, respectively. The large-span loess tunnel colud ensure the stability of the tunnel structure by adopting the composite structure of “steel frame+shotcrete+steel mesh+anchor bolt(pipe)+longitudinal connection bar”. The double-sided guide pit method was adopted in the construction of the tunnel entrance section, the three-step retaining core soil method in the construction of the tunnel body section, and the stability control technology of the large-span loess tunnel strengthened by steel pipe grouting was adopted in the tunnel bottom with low bearing capacity in the shallow section.
Key words:  tunnel engineering    lager span loess tunnel    deformation rule    stability of tunnel structure    control technology
收稿日期:  2018-11-27      发布日期:  2019-02-22     
中图分类号:  TU45  
基金资助: 国家重点研发计划子题(2016YFC0802202);长江学者计划(T2014214);中国博士后科学基金(2016M602738);陕西省自然科学基础研究计划项目(2017JM5051);国家自然科学基金项目(51108034,51408054,51678063)
作者简介:  陈建勋(1969— ),男,陕西韩城人,博士,教授,博士生导师,长江学者特聘教授,主要研究方向为隧道工程. E-mail: chenjx1969@163.com
引用本文:    
陈建勋, 罗彦斌. 大跨度黄土公路隧道结构稳定性及控制技术研究[J]. 隧道与地下工程灾害防治, 2019, 1(1): 93-101.
CHEN Jianxun, LUO Yanbin. The stability of structure and its control technology for lager-span loess tunnel. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 93-101.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2019/V1/I1/93
[1] 陈建勋,王梦恕,轩俊杰,等. 两车道公路黄土隧道变形规律[J]. 交通运输工程学报, 2012, 12(3): 9-18. CHEN Jianxun, Wang Mengshu, XUAN Junjie, et al. Deformation rule of loess highway tunnel with two lanes[J] Journal of Traffic and Transportation Engineering, 2012, 12(3): 9-18.
[2] 乔雄,陈建勋,王梦恕. 黄土公路隧道洞口段变形规律测试研究[J]. 岩石力学与工程学报, 2013, 32(增刊2): 3552-3556. QIAO Xiong, CHEN Jianxun, WANG Mengshu. Test study of deformation law of enterance section for loess highway tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(Suppl.2): 3552-3556.
[3] 陈建勋,姜久纯,罗彦斌,等. 黄土隧道洞口段支护结构的力学特性分析[J]. 中国公路学报,2008,21(5):75-80. CHEN Jianxun, JIANG Jiuchun, LUO Yanbin, et al. Mechanics characteristic analysis of support structure of loess tunnel entrance[J]. China Journal of Highway and Transport, 2008, 21(5): 75-80.
[4] 陈建勋,姜久纯,王梦恕. 黄土隧道网喷支护结构中锚杆的作用[J]. 中国公路学报,2007,20(3):71-75. CHEN Jianxun, JIANG Jiuchun, WANG Mengshu. Function of rock bolt of lattice girder and shotcrete support structure in loess tunnel[J]. China Journal of Highway and Transport, 2007, 20(3):71-75.
[5] 陈建勋,轩俊杰,乔雄. 浅埋黄土隧道中系统锚杆支护作用的数值模拟[J]. 长安大学学报(自然科学版),2011,31(1):59-62, 78. CHEN Jianxun, XUAN Junjie, QIAO Xiong. Numerical simulation of support action of systematic anchorage bolts in shallow-buried loess tunnel[J]. Journal of Chang'an University(Natural Science Edition), 2011, 31(1):59-62, 78.
[6] 陈建勋,杨海峰,夏鹏. 大跨度黄土隧道洞口浅埋段支护效果监测及分析[J]. 公路隧道,2013(4):23-27. CHEN Jianxun, YANG Haifeng XIA Peng. Monitoring and analysis of supporting effect of Shallow-buried section at the entrance of large-span loess tunnel[J]. Highway Tunnel, 2013(4): 23-27.
[7] 陈建勋,乔雄. 黄土隧道浅埋偏压洞口段套拱结构受力监测与分析[J]. 建筑科学与工程学报, 2011, 28(1):100-105. CHEN Jianxun, QIAO Xiong. Mechanical monitoring and analysis of umbrella arch structure in shallow-buried bias loess tunnel entrance[J]. Journal of Architecture and Civil Engineering, 2011, 28(1):100-105.
[8] 梁文灏,李国良,杨国柱,等. 郑西客运专线大断面黄土隧道设计与施工技术要点[C] //2006中国高速铁路隧道国际技术交流会. 北京:中国铁道出版社,2006. LIANG Wenhao, LI Guoliang, YANG Guozhu, et al. Key points for design and construction technology of large section loess tunnel on Zhengxi passenger dedicated line[C] //2006 China High Speed Railway Tunnel International Technical Exchange Conference. Beijing:China Railway Publishing House, 2006.
[9] 赵勇. 黄土隧道工程[M]. 北京:中国铁道出版社, 2011.
[10] HE Benguo, ZHU Yongquan, YE Chaoliang, et al. Model test for dynamic construction mechanical effect of large-span loess tunnel[J]. Journal of Shanghai Jiaotong University, 2011, 16(1):112-117.
[11] 辛振省. 砂质黄土大断面隧道施工方法优化研究[J]. 铁道工程学报, 2011(1):58-61. XIN Zhensheng. Research on optimization of construction method for sandy loess large section tunnel[J]. Journal of Railway Engineering Society, 2011(1): 58-61.
[12] 程选生, 王建华. 基于围岩位移控制的超大断面黄土隧道施工方法研究[J]. 岩土工程学报, 2013(增刊1):82-89. CHENG Xuansheng, WANG Jianhua. Construction methods for loess tunnels with super-large cross-section based on displacement control of surrounding rock[J]. Chinese Journal of Geotechnical Engineering, 2013(Suppl.1): 82-89.
[13] 杨建民. 大断面黄土隧道施工方法分析[J]. 铁道工程学报, 2015, 32(10):86-92. YANG Jianmin. Analysis of large cross section loess tunnel construction method[J]. Journal of Railway Engineering Society, 2015, 32(10):86-92.
[14] 张英才,胡国伟,辛振省. 大断面黄土隧道开挖工法对比分析与选择[J]. 铁道工程学报, 2010(3):87-92. ZHANG Yingcai, HU Guowei, XIN Zhensheng. Comparative analysis and selection of construction methods for large section loess tunnel[J]. Journal of Railway Engineering Society, 2010(3): 87-92.
[15] 陈建勋,乔雄,王梦恕. 黄土隧道锚杆受力与作用机制[J].岩石力学与工程学报, 2011, 30(8): 1690-1697. CHEN Jianxun, QIAO Xiong, WANG Mengshu. Stress and action mechanism of rock bolt in loess tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(8): 1690-1697.
[16] 陈建勋,王超,罗彦斌,等. 高含水量土质隧道不设系统锚杆的试验研究[J]. 岩土工程学报,2010,32(5):815-820. CHEN Jianxun, WANG Chao, LUO Yanbin, et al. Experimental research on high-water-content soil tunnel without systematic bolts[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(5): 815-820.
[1] 韩兴博, 陈子明, 苏恩杰, 梁晓明, 宋桂峰, 叶飞. 盾构隧道围岩压力分布规律及作用模式[J]. 隧道与地下工程灾害防治, 2022, 4(4): 34-43.
[2] 房倩, 杜建明, 王赶, 杨晓旭. 模型边界对圆形隧道开挖引起地表沉降的影响分析[J]. 隧道与地下工程灾害防治, 2022, 4(1): 10-17.
[3] 张姣龙, 高一民, 张建, 周浩, 潘野, 柯磊, 柳献. 一种模拟盾构刀盘破岩过程的模型试验设计原理和方法[J]. 隧道与地下工程灾害防治, 2021, 3(4): 20-28.
[4] 郭新新, 朱安龙, 王万平, 汪波, 王智佼, 王振宇. 高应力炭质板岩隧道大变形特征及其机理分析[J]. 隧道与地下工程灾害防治, 2021, 3(4): 29-39.
[5] 刘晓杰, 梁庆国, 刘传新, 张堂杰, 王文卓. 富水深埋黄土隧道变形规律及控制措施[J]. 隧道与地下工程灾害防治, 2021, 3(2): 23-32.
[6] 宋瑞霞, 赵永虎, 米维军, 韩侃, 蒋育华. 帷幕注浆在富水大跨度黄土隧道中的应用[J]. 隧道与地下工程灾害防治, 2021, 3(2): 43-48.
[7] 王纪伟, 张连震, 张庆松, 杨旆, 陈新, 王建辉, 韩子川, 王洪超, 孙子正, 屠文锋. 富水裂隙岩体注浆材料适用性现场试验研究[J]. 隧道与地下工程灾害防治, 2021, 3(1): 58-67.
[8] 刘立鹏,王彦兵,宋倩. 水工有压隧洞衬砌启裂水头及围岩联合承载影响分析[J]. 隧道与地下工程灾害防治, 2020, 2(4): 52-58.
[9] 李鹏飞,刘宏翔,赵勇,刘建友,王帆. 隧道穿越断层破碎带防突水最小安全厚度及其影响因素[J]. 隧道与地下工程灾害防治, 2020, 2(3): 77-84.
[10] 叶飞,王坚,田崇明,何彪,赵猛,韩兴博,李永健. 隧道排水管结晶堵塞病害研究现状与防治技术[J]. 隧道与地下工程灾害防治, 2020, 2(3): 13-22.
[11] 李利平,贺鹏,石少帅,刘洪亮,胡杰,秦承帅. 隧道施工过程巨石垮塌研究现状、问题与对策研究[J]. 隧道与地下工程灾害防治, 2019, 1(3): 22-31.
[12] 陈卫忠, 袁敬强, 黄世武, 杨磊. 富水风化花岗岩隧道突水突泥灾害防治技术[J]. 隧道与地下工程灾害防治, 2019, 1(3): 32-38.
[13] 王焕. 大直径泥水盾构穿越无加固条件沉降敏感带扰动控制技术研究[J]. 隧道与地下工程灾害防治, 2019, 1(2): 107-113.
[14] 谭忠盛. 热处理高强钢筋格栅在隧道工程应用的试验研究[J]. 隧道与地下工程灾害防治, 2019, 1(1): 86-92.
[15] 李天斌,巫晨笛,孟陆波,高美奔. 隧道坍方动态分析与综合预警方法研究[J]. 隧道与地下工程灾害防治, 2019, 1(1): 111-118.
[1] QIAN Qihu. Scientific use of the urban underground space to construction the harmonious livable and beautiful city[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 1 -7 .
[2] DENG Mingjiang, LIU Bin. Challenges, countermeasures and development direction of geological forward-prospecting for TBM cluster tunneling in super-long tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 8 -19 .
[3] DING Xiuli, ZHANG Yuting, ZHANG Chuanjian, YAN Tianyou, HUANG Shuling. Review on countermeasures and their adaptability evaluation to tunnels crossing active faults[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 20 -35 .
[4] JIAO Yuyong, ZHANG Weishe, OU Guangzhao, ZOU Junpeng, CHEN Guanghui. Review of the evolution and mitigation of the water-inrush disaster in drilling-and-blasting excavated deep-buried tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 36 -46 .
[5] ZHANG Qingsong, ZHANG Lianzhen, LI Peng, FENG Xiao. New progress in grouting reinforcement theory of water-rich soft stratum in underground engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 47 -57 .
[6] XIA Kaiwen, XU Ying, CHEN Rong. Dynamic tests of rocks subjected to simulated deep underground environments[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 58 -75 .
[7] HONG Kairong. Study on rock breaking and wear of TBM hob in high-strength high-abrasion stratum[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 76 -85 .
[8] TAN Zhongsheng. Application experimental study of high-strength lattice girders with heat treatment in tunnel engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 86 -92 .
[9] JING Hongwen, YU Liyuan, SU Haijian, GU Jincai, YIN Qian. Development and application of catastrophic experiment system for water inrush in surrounding rock of deep tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 102 -110 .
[10] LI Tianbin, WU Chendi, MENG Lubo, GAO Meiben. Study on dynamic analysis and comprehensive warning method of tunnel collapse[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 111 -118 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn