Please wait a minute...
 
隧道与地下工程灾害防治  2022, Vol. 4 Issue (1): 18-28    DOI: 10.19952/j.cnki.2096-5052.2022.01.03
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
高温-液氮循环处理下花岗岩损伤劣化机制
唐旭海,邵祖亮*,许婧璟,张怡恒
(武汉大学土木建筑工程学院, 湖北 武汉 430072)
The degradation mechanism of granite after the cyclic treatment of heating and liquid nitrogen cooling
TANG Xuhai, SHAO Zuliang*, XU Jingjing, ZHANG Yiheng
School of Civil Engineering, Wuhan University, Wuhan 430072, Hubei, China
下载:  PDF (18140KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 探讨通过高温-液氮循环处理使花岗岩初步劣化以辅助隧道掘进机(tunnel boring machine, TBM)掘进的新技术手段。对花岗岩进行200 ℃-液氮、300 ℃-液氮及400 ℃-液氮循环处理,循环处理次数为1次、3次、6次、12次、20次,并对所有处理后试样进行单轴压缩试验。采用薄片分析技术及纳米压痕技术研究400 ℃-液氮循环处理后花岗岩的细观结构及微观力学性质。结果表明:相同循环处理次数下,循环温度越高,花岗岩的宏观力学性质劣化程度越大;各循环温度下,宏观力学性质随循环次数的变化可分为3个阶段:快速变化(0~6次)、缓慢变化(6~12次)以及基本恒定阶段(12次以后);循环处理温度越高、次数越多,花岗岩在单轴压缩下的破坏模式越复杂;400 ℃-液氮循环处理下,花岗岩宏观力学性质改变主要源于微裂隙的发展而非晶体本身力学性质的劣化。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
唐旭海
邵祖亮
许婧璟
张怡恒
关键词:  TBM掘进  花岗岩  高温-液氮循环处理  纳米压痕    
Abstract: This paper discussed the auxiliary technique of TBM tunnelling through cyclic treatment of heating-Liquid nitrogen(LN2)cooling on granite. The granites were subjected to the cyclic treatment of 200 ℃-LN2 cooling, 300 ℃-LN2 cooling and the 400 ℃-LN2 cooling, and the numbers of cyclic treatment were 1, 3, 6, 12, 20 times, and all the treated specimens were subjected to uniaxial compression tests. Microstructure and the micromechanical properties of granites treated with cyclic treatment of 400 ℃-LN2 cooling were studied by microscope and nanoindentation technology. The results showed that, under the same times of cyclic treatment, the higher the heating temperature was, the greater the deterioration degree of granites was. The change of macroscopic mechanical properties with the increase of the cyclic treatment times could be divided into three stages: rapid change stage(0-6 times), slow change stage(6-12 times)and nearly constant stage(after 12 times). The higher heating temperature, and the more times of cyclic treatment, the failure mode of granite under uniaxial compression would be more complex. The degradation induced by cyclic treatment of 400 ℃-LN2 cooling was mainly due to the development of microcracks rather than the deterioration of mechanical properties of crystals themselves.
Key words:  TBM tunnelling    granite    cyclic treatment of heating-LN2 cooling    nanoindentation
收稿日期:  2021-05-25      修回日期:  2021-07-09      发布日期:  2022-03-20     
中图分类号:  U45  
通讯作者:  邵祖亮(1990—), 男, 湖北仙桃人, 博士, 主要研究方向为高温-液氮处理破岩.    E-mail:  shaozuliang@whu.edu.cn
作者简介:  唐旭海(1984— ), 男, 四川成都人, 博士, 教授, 博士生导师,主要研究方向为微观敏感裂隙岩体破碎机理. E-mail:xuhaitang@whu.edu.cn. *通信作者简介:邵祖亮(1990— ), 男, 湖北仙桃人, 博士, 主要研究方向为高温-液氮处理破岩. E-mail:shaozuliang@whu.edu.cn
引用本文:    
唐旭海, 邵祖亮, 许婧璟, 张怡恒. 高温-液氮循环处理下花岗岩损伤劣化机制[J]. 隧道与地下工程灾害防治, 2022, 4(1): 18-28.
TANG Xuhai, SHAO Zuliang, XU Jingjing, ZHANG Yiheng. The degradation mechanism of granite after the cyclic treatment of heating and liquid nitrogen cooling. Hazard Control in Tunnelling and Underground Engineering, 2022, 4(1): 18-28.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2022/V4/I1/18
[1] ELLECOSTA P, KÄSLING H, THURO K. Tool wear in TBM hard rock drilling-backgrounds and special phenomena[J]. Geomechanics and Tunnelling, 2018, 11(2): 142-148.
[2] 周宗青, 李利平, 石少帅,等.隧道突涌水机制与渗透破坏灾变过程模拟研究[J]. 岩土力学, 2020,41(11): 3621-3631. ZHOU Zongqing, LI Liping, SHI Shaoshuai, et al. Study on tunnel water inrush mechanism and simulation of seepage failure process[J]. Rock and Soil Mechanics, 2020, 41(11): 3621-3631.
[3] 王旭, 李晓, 廖秋林. 岩石可掘进性研究的试验方法述评[J]. 地下空间与工程学报, 2009, 5(1): 67-73. WANG Xu, LI Xiao, LIAO Qiulin. A review of rock boreability testing for TBM tunnelling[J]. Chinese Journal of Underground Space and Engineering, 2009, 5(1): 67-73.
[4] YAGIZ S, KARAHAN H. Prediction of hard rock TBM penetration rate using particle swarm optimization[J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48(3): 427-433.
[5] 刘泉声,刘建平,潘玉丛,等. 硬岩隧道掘进机性能预测模型研究进展[J]. 岩石力学与工程学报, 2016,35(增刊1): 2766-2786. LIU Quansheng, LIU Jianping, PAN Yucong, et al. Research advances of tunnel boring machine performance prediction models for hard rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(Suppl.1): 2766-2786.
[6] GONG Q M, ZHAO J. Development of a rock mass characteristics model for TBM penetration rate prediction[J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(1): 8-18.
[7] 吴言坤,周诗涵,陈健,等. 武汉地铁8号线越江泥水盾构土岩复合地层刀具磨损分析 [J]. 隧道与地下工程灾害防治, 2020,2(3): 30-35. WU Yankun, ZHOU Shihan, CHEN Jian, et al. Analysis on wearing of cuttering tools of slurry shield machines in soil-rock composite strata used in cross-river section of Wuhan Metro Line 8[J]. Hazard Control in Tunnelling and Underground Engineering, 2020, 2(3): 30-35.
[8] 洪开荣. 高强度高磨蚀地层TBM滚刀破岩与磨损研究[J]. 隧道与地下工程灾害防治, 2019,1(1): 76-85. HONG Kairong. Study on rock breaking and wear of TBM hob in high-strength high-abrasion stratum[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 76-85.
[9] 万治昌, 沙明元, 周雁领. 盘形滚刀的使用与研究(1): TB880E型掘进机在秦岭隧道施工中的应用[J]. 现代隧道技术, 2002, 39(5): 1-11.
[10] 张勇智. 硬岩隧洞掘进机(TBM)刀具的管理[J]. 现代隧道技术, 2007, 44(1): 70-72. ZHANG Yongzhi. Management of cutter-heads of TBM for hard rock boring[J]. Modern Tunnelling Technology, 2007, 44(1): 70-72.
[11] 张晓波, 刘泉声, 张建明. TBM掘进刀具磨损实时监测技术及刀盘振动监测分析[J]. 隧道建设, 2017, 37(3):380-385. ZHANG Xiaobo, LIU Quansheng, ZHANG Jianming. Real-time monitoring technology for wear of cutters and monitoring and analysis of cutterhead vibration of TBM[J]. Tunnel Construction, 2017, 37(3): 380-385.
[12] KANT M A, ROSSI E, MADONNA C, et al. A theory on thermal spalling of rocks with a focus on thermal spallation drilling[J]. Journal of Geophysical Research: Solid Earth, 2017, 122(3):1805-1815.
[13] ZHAO Zhihong. Thermal influence on mechanical properties of granite: a microcracking perspective[J]. Rock Mechanics and Rock Engineering, 2016, 49(3): 747-762.
[14] ROSSI E, KANT M A, MADONNA C, et al. The effects of high heating rate and high temperature on the rock strength: feasibility study of a thermally assisted drilling method[J]. Rock Mechanics and Rock Engineering, 2018, 51: 2957-2964.
[15] KANT M A, MEIER T, ROSSI E, et al. Thermal spallation drilling-an alternative drilling technology for hard rock drilling[J]. Oil Gas, 2017, 43(1): 23-25.
[16] HASSANI F, NEKOOVAGHT P M, GHARIB N. The influence of microwave irradiation on rocks for microwave-assisted underground excavation[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2016, 8:1-15.
[17] 卢高明, 李元辉, HASSANI Ferri, 等. 微波辅助机械破岩试验和理论研究进展[J]. 岩土工程学报,2016,38(8):1497-1506. LU Gaoming, LI Yuanhui, HASSANI Ferri, et al. Review of theoretical and experimental studies on mechanical rock fragmentation using microwave-assisted approach[J].Chinese Journal of Geotechnical Engineering, 2016, 38(8): 1497-1506.
[18] XU Z, REED C B, KONERCKI G, et al. Specific energy for pulsed laser rock drilling[J]. Journal of Laser Applications, 2003, 15(1): 25-30.
[19] SHI Xiaomeng, DUAN Yunling, HAN Bing,et al.Enhanced rock breakage by pulsed laser induced cavitation bubbles: preliminary experimental observations and conclusions[J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2020, 6(1): 1-12.
[20] YASEEN M. Use of Thermal Heating/Cooling Process for Rock Fracturing: Numerical and Experimental Analysis[D]. Lille, France: University of Lille, 2014.
[21] BROWNING J, MEREDITH P, GUDMUNDSSON A. Cooling-dominated cracking in thermally stressed volcanic rocks[J].Geophysical Research Letters,2016, 43(16): 8417-8425.
[22] SHAO Zuliang, WANG Yong, TANG Xuhai. The influences of heating and uniaxial loading on granite subjected to liquid nitrogen cooling[J]. Engineering Geology, 2020, 271:105614-105624.
[23] WANG Fei, FRÜHWIRT Thomas, KONIETZKY Heinz, et al. Thermo-mechanical behaviour of granite during high-speed heating[J]. Engineering Geology, 2019, 260: 105258.
[24] XU Jingjing, TANG Xuhai, WANG Zhengzhi, et al. Investigating the softening of weak interlayers during landslides using nanoindentation experiments and simulations[J]. Engineering Geology, 2020, 277:105801-105812.
[25] 张帆, 郭翰群, 赵建建,等. 花岗岩微观力学性质试验研究[J]. 岩石力学与工程学报, 2017,36(增刊2): 3864-3872. ZHANG Fan, GUO Hanqun, ZHAO Jianjian, et al. Experimental study of micro-mechanical properties of granite[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(Suppl.2): 3864-3872.
[26] OLIVER W C, PHARR G M. Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology[J]. Journal of Materials Research, 2004, 19(1):3-20.
[27] HAY J.Introduction to instrumented indentation testing[J]. Experimental Techniques, 2009, 33(6): 66-72.
[28] ZHANG Jianhong, HU Liming, PANT Rohit, et al. Effects of interlayer interactions on the nanoindentation behavior and hardness of 2∶1 phyllosilicates[J]. Applied Clay Science, 2013, 80/81: 267-280.
[29] ULM Franz-josef, ABOUSLEIMAN Younane. The nanogranular nature of shale[J]. Acta Geotechnica, 2006, 1(2): 77-88.
[30] BOBKO Christopher, ULM Franz-josef. The nano-mechanical morphology of shale[J]. Mechanics of Materials, 2008, 40(4/5): 318-337.
[1] 陈卫忠, 袁敬强, 黄世武, 杨磊. 富水风化花岗岩隧道突水突泥灾害防治技术[J]. 隧道与地下工程灾害防治, 2019, 1(3): 32-38.
[1] QIAN Qihu. Scientific use of the urban underground space to construction the harmonious livable and beautiful city[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 1 -7 .
[2] DENG Mingjiang, LIU Bin. Challenges, countermeasures and development direction of geological forward-prospecting for TBM cluster tunneling in super-long tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 8 -19 .
[3] DING Xiuli, ZHANG Yuting, ZHANG Chuanjian, YAN Tianyou, HUANG Shuling. Review on countermeasures and their adaptability evaluation to tunnels crossing active faults[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 20 -35 .
[4] JIAO Yuyong, ZHANG Weishe, OU Guangzhao, ZOU Junpeng, CHEN Guanghui. Review of the evolution and mitigation of the water-inrush disaster in drilling-and-blasting excavated deep-buried tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 36 -46 .
[5] ZHANG Qingsong, ZHANG Lianzhen, LI Peng, FENG Xiao. New progress in grouting reinforcement theory of water-rich soft stratum in underground engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 47 -57 .
[6] XIA Kaiwen, XU Ying, CHEN Rong. Dynamic tests of rocks subjected to simulated deep underground environments[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 58 -75 .
[7] HONG Kairong. Study on rock breaking and wear of TBM hob in high-strength high-abrasion stratum[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 76 -85 .
[8] TAN Zhongsheng. Application experimental study of high-strength lattice girders with heat treatment in tunnel engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 86 -92 .
[9] CHEN Jianxun, LUO Yanbin. The stability of structure and its control technology for lager-span loess tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 93 -101 .
[10] JING Hongwen, YU Liyuan, SU Haijian, GU Jincai, YIN Qian. Development and application of catastrophic experiment system for water inrush in surrounding rock of deep tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 102 -110 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn