Please wait a minute...
 
隧道与地下工程灾害防治  2022, Vol. 4 Issue (1): 29-37    DOI: 10.19952/j.cnki.2096-5052.2022.01.04
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
基于PSO-SVM算法的层状软岩隧道大变形预测方法
杨文波1,王宗学1,田浩晟1,吴枋胤1,杨自成2
(1. 西南交通大学土木工程学院, 四川 成都 610031;2. 四川绵九高速公路有限责任公司, 四川 绵阳 621700
Large deformation prediction method of layered soft rock tunnel based on PSO-SVM algorithm
YANG Wenbo1, WANG Zongxue1, TIAN Haosheng1, WU Fangyin1, YANG Zicheng2
1. School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China; 2. Sichuan Mianjiu Expressway Co., Ltd., Mianyang 621700, Sichuan, China
下载:  PDF (4002KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 为提高复杂地质条件下层状软岩隧道大变形预测的可靠性,提出基于粒子群优化(particle swarm optimization, PSO)-支持向量机(support vector machine, SVM)算法的隧道大变形预测方法,解决大变形预测中多项评价指标权重计算复杂及界限值多样等问题。为充分考量层状软弱围岩强度、围岩结构类型、地应力及地下水对隧道大变形的影响,选取岩体抗压强度、层理倾角、初始地应力状态、埋深、岩体修正质量指标[BQ]、地下水发育情况6项亚级指标对大变形等级进行预测。根据大变形等级划分标准,构建以地应力反演、现场大变形监测信息为基础的大变形预测模型,并采用粒子群算法优化惩罚参数C与核函数参数Gamma,以提高模型的准确性。研究结果表明:采用粒子群优化-支持向量机(particle swarm optimization, PSO-SVM)算法可以避免传统预测方法如地质综合判断法和强度应力比法由于单一指标和主观原因引起的误差,预测精度高;该方法利用隧道已发生的大变形信息,构建出符合目标隧道现场实际规律的PSO-SVM大变形预测模型;PSO-SVM模型对样本测试集预测的准确度达86.36%,优于SVM和GS-SVM模型;以九绵高速典型层状软岩隧道白马隧道为研究对象,应用提出的PSO-SVM模型进行大变形预测,通过与现场实测对比发现,预测精度达80%,验证了该方法的可行性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨文波
王宗学
田浩晟
吴枋胤
杨自成
关键词:  层状软岩隧道  大变形预测  支持向量机  粒子群优化    
Abstract: In order to improve the reliability of prediction of large deformation level of layered soft rock tunnels under complex geological conditions, a particle swarm optimization(PSO)based support vector machine(SVM)was proposed. The large deformation prediction method of tunnel solved the problems of complex calculation of multiple evaluation index weights and diverse boundary values in large deformation prediction. In order to fully consider the influence of layered soft rock surrounding rock strength, surrounding rock structure type, in-situ stress and groundwater on the large deformation of the tunnel, the 6 sub-indices of value: uniaxial compressive strength, rock inclination angle, initial in-situ stress state, burial depth, rock mass correction quality correction index [BQ] and groundwater development, were used to predict the large deformation level. This method constructed a large deformation prediction model based on in-situ stress inversion and on-site large deformation monitoring information according to the classification standard of large deformation grades, and used particle swarm optimization algorithm to adjust the penalty parameter C and the kernel function parameter Gamma to improve the model's performance accuracy. The research results showed that the use of particle swarm optimization-support vector machine(PSO-SVM)algorithm could avoid errors caused by traditional prediction methods such as geological comprehensive judgment method and strength-stress ratio method due to a single index and subjective reasons, and the prediction accuracy was high; this method used the large deformation information of tunnels that had occurred, a PSO-SVM large deformation prediction model conforming to the actual law of the target tunnel site was constructed; the PSO-SVM model had an accuracy of 86.36% in the prediction of the sample test set, which was better than the SVM and GS-SVM models. Taking the Baima Tunnel, a typical layered soft rock tunnel of the Jiu-mian Expressway as the research object, the proposed PSO-SVM model was used to conduct large-scale research. The deformation prediction was compared with the field measurement, and it was found that the prediction accuracy reached 80%, which verified the feasibility of the method.
Key words:  layered soft rock tunnel    large deformation prediction    support vector machines    particle swarm optimization
收稿日期:  2021-11-25      修回日期:  2022-02-25      发布日期:  2022-03-20     
中图分类号:  U45  
作者简介:  杨文波(1985— ),男,四川成都人,博士,教授,博士生导师,主要研究方向为大规模隧道群结构安全标识系统,车致振动荷载作用下隧道结构动力响应特性. E-mail:yangwenbo1179@hotmail.com
引用本文:    
杨文波, 王宗学, 田浩晟, 吴枋胤, 杨自成. 基于PSO-SVM算法的层状软岩隧道大变形预测方法[J]. 隧道与地下工程灾害防治, 2022, 4(1): 29-37.
YANG Wenbo, WANG Zongxue, TIAN Haosheng, WU Fangyin, YANG Zicheng. Large deformation prediction method of layered soft rock tunnel based on PSO-SVM algorithm. Hazard Control in Tunnelling and Underground Engineering, 2022, 4(1): 29-37.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2022/V4/I1/29
[1] 代聪.高地应力场软岩隧道开挖与支护研究[D].成都:西南交通大学,2018. DAI Cong. Study on excavation and support of soft rock tunnel in high ground stress field[D]. Chengdu: Southwest Jiaotong University, 2018.
[2] 石州,罗彦斌,陈建勋,等.木寨岭公路隧道大变形综合评价预测[J].公路交通科技,2020,37(8):90-98. SHI Zhou, LUO Yanbin, CHEN Jianxun, et al. Comprehensive evaluation and prediction of large deformation of Muzhailing Highway Tunnel[J]. Journal of Highway and Transportation Research and Development, 2020, 37(8): 90-98.
[3] 徐林生.二郎山公路隧道岩爆特征与防治措施的研究[J].土木工程学报,2004,37(1):61-64. XU Linsheng. Research of rockburst character and prevention measure in Erlang Mountain Highway Tunnel[J]. China Civil Engineering Journal, 2004, 37(1):61-64.
[4] HOEK E, MARINOS P. Predicting tunnel squeezing problems in weak heterogeneous rock masses[J]. Tunnels and Tunnelling International, 2000, 32(11):45-51.
[5] 李国良,刘志春,朱永全.兰渝铁路高地应力软岩隧道挤压大变形规律及分级标准研究[J].现代隧道技术,2015,52(1):62-68. LI Guoliang, LIU Zhichun, ZHU Yongquan. On the large squeezing deformation law and classification criteria for the Lanzhou-Chongqing Railway tunnels in soft and high geostress rocks[J]. Modern Tunnelling Technology, 2015, 52(1):62-68.
[6] 陈子全,何川,吴迪,等.高地应力层状软岩隧道大变形预测分级研究[J].西南交通大学学报,2018,53(6):1237-1244. CHEN Ziquan, HE Chuan, WU Di, et al. Study of large deformation classification criterion for layered soft rock tunnels under high geostress[J]. Journal of Southwest Jiaotong University, 2018, 53(6): 1237-1244.
[7] 孙元春,高波,许再良,等.隧道围岩挤压变形预测方法研究[J].铁道工程学报,2012,29(2):50-54. SUN Yuanchun, GAO Bo, XU Zailiang, et al. Research on prediction method for squeezing deformation of surrounding rock of tunnel[J]. Journal of Railway Engineering Society, 2012, 29(2): 50-54.
[8] 廖烟开,郭德平,刘志强,等.隧道周边应变与挤压因子法在隧道围岩大变形预测中的应用[J].现代隧道技术,2020,57(4):20-26. LIAO Yankai, GUO Deping, LIU Zhiqiang, et al. Application of peripheral strain and squeezing factor methods in the prediction of large deformation of tunnel surrounding rocks[J]. Modern Tunnelling Technology, 2020, 57(4):20-26.
[9] 王开洋,尚彦军,何万通,等.深埋公路隧道围岩大变形预测研究[J].地下空间与工程学报,2015,11(5):1164-1174. WANG Kaiyang, SHANG Yanjun, HE Wantong, et al. Prediction of surrounding rock deformation in deep highway tunnel[J]. Chinese Journal of Underground Space and Engineering, 2015, 11(5): 1164-1174.
[10] 刘志春,朱永全,李文江,等.挤压性围岩隧道大变形机理及分级标准研究[J].岩土工程学报,2008,30(5):690-697. LIU Zhichun, ZHU Yongquan, LI Wenjiang, et al. Mechanism and classification criterion for large deformation of squeezing ground tunnels[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(5): 690-697.
[11] 孙炀. 软岩隧道挤压大变形的SVM预测及其支护对策研究[D].济南:济南大学,2018. SUN Yang. Prediction of tunnel squeezing by SVM and study on its support measures[D]. Jinan: University of Jinan, 2018.
[12] 黄震,廖敏杏,张皓量,等.基于SVM-BP模型非完整数据的隧道围岩挤压变形预测[J].现代隧道技术,2020,57(增刊1):129-138. HUANG Zhen, LIAO Minxing, ZHANG Haoliang, et al. Prediction of tunnel surrounding rock extrusion deformation based on SVM-BP model with incomplete data[J]. Modern Tunnelling Technology, 2020, 57(Suppl.1):129-138.
[13] 焦玉勇,欧光照,王浩,等.基于证据理论的隧道挤压变形预测[J].应用基础与工程科学学报,2021,29(5):1156-1170. JIAO Yuyong, OU Guangzhao, WANG Hao, et al. Prediction of tunnel squeezing based on evidence theory[J]. Journal of Basic Science and Engineering, 2021, 29(5): 1156-1170.
[14] 易文豪,王明年,童建军,等.基于支持向量机的大断面岩质隧道掌子面围岩非均一性判识方法[J].中国铁道科学,2021,42(5):112-122. YI Wenhao, WANG Mingnian, TONG Jianjun, et al. Inhomogeneity identification method for surrounding rock of large-section rock tunnel face based on support vector machine[J]. China Railway Science, 2021, 42(5): 112-122.
[15] 曹跃. 基于支持向量回归的双相不锈钢抗点蚀性能及焊接工艺优化研究[D].重庆:重庆大学,2016. CAO Yue. Prediction on the pitting corrosion resistance of duplex stainless steel and its welding process optimization via SVR[D].Chongqing:Chongqing University, 2016.
[16] 刘超,乔圣扬.基于主成分分析与多分类支持向量机的单沟泥石流危险性预测[J].河北地质大学学报,2021,44(4):83-89. LIU Chao, QIAO Shengyang. Hazard prediction of single gully debris flow based on principal component analysis and multi-classification support vector machine[J].Journal of Hebei GEO University, 2021, 44(4):83-89.
[17] 李天斌, 孟陆波, 王兰生.高地应力隧道稳定性及岩爆、大变形灾害防治[M].北京:科学出版社,2016.
[18] 陈卫忠,田云,王学海,等.基于修正[BQ] 值的软岩隧道挤压变形预测[J].岩土力学,2019,40(8):3125-3134. CHEN Weizhong, TIAN Yun, WANG Xuehai, et al. Squeezing prediction of tunnel in soft rocks based on modified [BQ] [J]. Rock and Soil Mechanics, 2019, 40(8):3125-3134.
[19] 招商局重庆交通科研设计院有限公司.公路隧道设计规范:JTG 3370.1—2018[S].北京:中国建筑标准出版社,2018.
[20] 徐林生,李永林,程崇国.公路隧道围岩变形破裂类型与等级的判定[J].重庆交通大学学报(自然科学版),2002(2):16-20. XU Linsheng, LI Yongling, CHENG Chongguo. Judging of the deformation-cracking type and grade about surrounding rock of highway tunnel [J].Journal of Chongqing Jiaotong University(Natural Science), 2002(2):16-20.
[21] BEWICK R P, KAISER P K, AMANN F. Strength of massive to moderately jointed hard rock masses[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2019, 11(3): 562-575.
[22] MAO J Z, HUANG Z W, XIAO L P, et al. Prediction of mechanical parameters of the surrounding rock based on Hoek-Brown criterion[J].IOP Conference Series: Earth and Environmental Science, 2020, 570(5):052071.
[1] 张斌, 佟彬, 刘国强, 周子豪, 王树英. 基于PSO-RF模型的复杂地层双模盾构土压掘进模式下密封舱压力预测[J]. 隧道与地下工程灾害防治, 2023, 5(1): 97-106.
[2] 付俊生. 隧道围岩变形预测及趋势判断方法[J]. 隧道与地下工程灾害防治, 2019, 1(4): 103-108.
[1] QIAN Qihu. Scientific use of the urban underground space to construction the harmonious livable and beautiful city[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 1 -7 .
[2] DENG Mingjiang, LIU Bin. Challenges, countermeasures and development direction of geological forward-prospecting for TBM cluster tunneling in super-long tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 8 -19 .
[3] DING Xiuli, ZHANG Yuting, ZHANG Chuanjian, YAN Tianyou, HUANG Shuling. Review on countermeasures and their adaptability evaluation to tunnels crossing active faults[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 20 -35 .
[4] JIAO Yuyong, ZHANG Weishe, OU Guangzhao, ZOU Junpeng, CHEN Guanghui. Review of the evolution and mitigation of the water-inrush disaster in drilling-and-blasting excavated deep-buried tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 36 -46 .
[5] ZHANG Qingsong, ZHANG Lianzhen, LI Peng, FENG Xiao. New progress in grouting reinforcement theory of water-rich soft stratum in underground engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 47 -57 .
[6] XIA Kaiwen, XU Ying, CHEN Rong. Dynamic tests of rocks subjected to simulated deep underground environments[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 58 -75 .
[7] HONG Kairong. Study on rock breaking and wear of TBM hob in high-strength high-abrasion stratum[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 76 -85 .
[8] TAN Zhongsheng. Application experimental study of high-strength lattice girders with heat treatment in tunnel engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 86 -92 .
[9] CHEN Jianxun, LUO Yanbin. The stability of structure and its control technology for lager-span loess tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 93 -101 .
[10] JING Hongwen, YU Liyuan, SU Haijian, GU Jincai, YIN Qian. Development and application of catastrophic experiment system for water inrush in surrounding rock of deep tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 102 -110 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn