Please wait a minute...
 
隧道与地下工程灾害防治  2022, Vol. 4 Issue (1): 38-47    DOI: 10.19952/j.cnki.2096-5052.2022.01.05
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
桩侧注浆提升粉质黏土地层既有桩基承载力试验研究
周勇1,李召峰2,左志武1,王川1,2,王钰鑫2,林春金2,张新3,张乾青2,姚望3,王凯3
(1.山东高速集团有限公司, 山东 济南 250101;2.山东大学岩土与结构工程研究中心, 山东 济南 250061;3.山东高速股份有限公司, 山东 济南 250014
Eexperimental study of the bearing capacity of existing pile foundation in silty clay stratum promoted by pile side grouting
ZHOU Yong1, LI Zhaofeng2, ZUO Zhiwu1, WANG Chuan1,2, WANG Yuxin2, LIN Chunjin2, ZHANG Xin3, ZHANG Qianqing2, YAO Wang3, WANG Kai3
1. Shandong High Speed Group Co., Ltd., Jinan 250101, Shandong, China; 2. Geotechnical and Structural Engineering Research Center, Shandong University, Jinan 250061, Shandong, China; 3. Shangdong Hi-speed Company Limited, Jinan 250014, Shandong, China
下载:  PDF (11680KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对处于粉质黏土地层的既有桩基础承载力不足问题,通过注浆模拟试验,对桩侧注浆提升既有桩基承载力的效果进行系统研究。其加固机理主要是通过注浆材料对桩周土体的挤密作用,增大桩侧-土界面的摩擦阻力,限制桩身沉降,提高桩基础的承载能力。试验结果表明:浆液水灰比、注浆压力、注浆孔布设位置与注浆量为桩基加固效果的4个主控因素。浆液水灰比和注浆压力两者综合作用,通过对浆脉形态的控制,直接影响浆液对粉质黏土地层的挤密效果。根据挤密效果的不同,将不同水灰比与注浆压力的组合分成强、中、弱3个加固设计区,其中,选用浆液水灰比0.8与注浆压力2 MPa的挤密土体在最大程度上提升了物理力学强度。桩基础承载力的提升幅度与注浆量呈正相关关系,与浆脉形成位置距桩身的距离呈反比例关系,根据浆脉形成位置距桩身的距离、注浆加固土体范围被分成了强作用区与弱作用区。桩侧注浆对侧摩阻力的提升主要产生于桩身的中下段,在实际工程中,着重对该段进行加固将大量减少对人力、物力的消耗。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周勇
李召峰
左志武
王川
王钰鑫
林春金
张新
张乾青
姚望
王凯
关键词:  桩侧注浆  桩基承载力  粉质黏土  注浆模型试验    
Abstract: Aiming at the problem of insufficient bearing capacity of existing pile foundation in silty clay stratum, the effect of improving bearing capacity of existing pile foundation by side grouting was studied systematically through grouting simulation experiment. The reinforcement mechanism was mainly through the compaction effect of grouting material on the soil around the pile, increasing the friction resistance of the pile-soil interface, restricting the settlement of the pile body, and improving the bearing capacity of the pile foundation. The results showed that the grouting water cement ratio, grouting pressure, grouting hole layout position and grouting amount were the four main controlling factors for the reinforcement effect of pile foundation. The combined action of slurry water-cement ratio and grouting pressure directly affected the compaction effect of slurry on silty clay stratum by controlling the shape of slurry veins. According to the different compaction effects, the combination of different water cement ratio and grouting pressure was divided into three reinforcement design areas: strong, medium and weak. Among them, the compacted soil with a slurry water-cement ratio of 0.8 and a grouting pressure of 2 MPa improved the physical and mechanical strength to the greatest extent. The increase of the bearing capacity of pile foundation was positively correlated with the amount of grouting, and inversely proportional to the distance between the formation position of grouting vein and the pile body. According to the different distance between the formation position of grouting vein and the pile body, the soil reinforced by grouting was divided into the strong action area and the weak action area. In addition, the improvement of lateral friction resistance of pile side grouting was mainly generated in the middle and lower section of pile body. In practical engineering, the reinforcement of this section reduced the consumption of manpower and material resources.
Key words:  pile side grouting    pile bearing capacity    silty clay    grouting model experiment
收稿日期:  2022-02-10      修回日期:  2022-03-04      发布日期:  2022-03-20     
中图分类号:  TU52  
基金资助: 国家自然科学基金面上资助项目(52178338)
通讯作者:  李召峰(1986— ),男,山东商河人,博士,教授,博士生导师,主要研究方向为材料与岩土耦合作用机理,多源固废基绿色土木功能材料研发与设计理论,工业及城市固废协同综合利用方法与工艺等.    E-mail:  lizf@sdu.edu.cn
作者简介:  周勇(1962— ),男,山东聊城人,博士,研究员,主要研究方向为智能交通工程建设及固废资源化利用等. E-mail:sdgskjb@126.com.
引用本文:    
周勇, 李召峰, 左志武, 王川, 王钰鑫, 林春金, 张新, 张乾青, 姚望, 王凯. 桩侧注浆提升粉质黏土地层既有桩基承载力试验研究[J]. 隧道与地下工程灾害防治, 2022, 4(1): 38-47.
ZHOU Yong, LI Zhaofeng, ZUO Zhiwu, WANG Chuan, WANG Yuxin, LIN Chunjin, ZHANG Xin, ZHANG Qianqing, YAO Wang, WANG Kai. Eexperimental study of the bearing capacity of existing pile foundation in silty clay stratum promoted by pile side grouting. Hazard Control in Tunnelling and Underground Engineering, 2022, 4(1): 38-47.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2022/V4/I1/38
[1] 余文章,李向清,庞金波. 软弱土地基不均匀沉降的桩基加固应用及研究[J]. 工程质量, 2018, 36(8): 48-51. YU Wenzhang, LI Xiangqing, PANG Jinbo. The application and research of pile foundation reinforcement for differential settlement of soft soil foundation[J]. Construction Quality, 2018, 36(8): 48-51.
[2] 傅强. 注浆法在卵石地质旧桥桩基加固中的应用[J]. 工程与建设, 2008, 22(5): 684-686. FU Qiang. Application of grouting method in old pebble-geological bridge pile foundation reinforcement[J]. Engineering and Construction, 2008, 22(5): 684-686.
[3] 朱慈祥,汪志春,徐浪, 等. 运营桥梁抬桩加固既有桩基础沉降分析及监测研究[J]. 世界桥梁, 2018, 46(3): 86-90. ZHU Cixiang, WANG Zhichun, XU Lang, et al. Analysis and monitoring for pile foundation subsidence of a bridge in service strengthened by adding piles[J]. World Bridges, 2018, 46(3): 86-90.
[4] 李长城.基于济青高速公路改扩建环境特点的桥梁加固施工思路探索[J].智能城市,2019,5(24):146-147.
[5] 柳琪. 压力注浆在桥梁桩基础加固中的应用[J]. 城市道桥与防洪, 2014(1): 75-77. LIU Qi. Application of pressure grouting in reinforcement of bridge pile foundation[J]. Urban Roads Bridges & Flood Control, 2014(1): 75-77.
[6] 黄秀珠. 增补桩基加固技术在墩柱盖梁裂缝病变桥梁的应用探讨[J]. 西部交通科技, 2018(8): 100-104. HUANG Xiuzhu. Application of supplementary pile foundation reinforcement technology in the cracking damage of bridge pier cap beams[J]. Western China Communications Science & Technology, 2018(8): 100-104.
[7] 张利鹏. 非湿陷性黄土地区不同成孔方式桩端后压浆灌注桩承载特性研究[D]. 西安: 长安大学, 2018. ZHANG Lipeng. Study on bearing performance of the post-grouting piles with different hole-forming methods in non collaosible loess area[D]. Xi'an: Chang'an University, 2018.
[8] 李术才,陈红宾,张晓, 等. 粉质黏土隧道超前支护效应试验研究[J]. 中南大学学报(自然科学版), 2019, 50(4): 946-956. LI Shucai, CHEN Hongbin, ZHANG Xiao, et al. Experimental study on advanced support effect in silty clay tunnel[J]. Journal of Central South University(Science and Technology), 2019, 50(4): 946-956.
[9] 赵春风, 吴悦, 赵程, 等. 黏土中桩端后注浆单桩抗压承载特性室内模型试验研究[J]. 天津大学学报(自然科学与工程技术版), 2019, 52(12):1235-1244. ZHAO Chunfeng, WU Yue, ZHAO Cheng, et al. Indoor model tests on the compressive bearing behavior of a single pile in clay with pile end post-grouting[J]. Journal of Tianjin University(Science and Technology), 2019, 52(12):1235-1244.
[10] 刘奇,陈卫忠,袁敬强, 等. 岩溶充填黏土注浆加固试验研究[J]. 岩石力学与工程学报, 2019, 38(增刊1): 3179-3188. LIU Qi, CHEN Weizhong, YUAN Jingqiang, et al. Laboratory experiment study of grouted materials filled in Karst caverns[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(Suppl.1): 3179-3188.
[11] 张文学, 刘海陆, 谢全懿. 岩溶区桩基注浆加固效果的影响因素分析[J]. 铁道建筑, 2014, 54(7): 28-30. ZHANG Wenxue, LIU Hailu, XIE Quanyi. Affected factors analysis of pile foundation grouting reinforcing effect in Karst region[J]. Railway Engineering, 2014, 54(7): 28-30.
[12] 郑昭瑜. CFG桩软基加固质量缺陷原因分析及处理方法探讨[J]. 四川建材, 2018, 44(12): 100-101.
[13] 罗根传,何忠明,曾铃. 高速公路改扩建工程边坡抗滑桩加固效果数值分析[J]. 中南大学学报(自然科学版), 2015, 46(6): 2244-2249. LUO Genchuan, HE Zhongming, ZENG Ling. Numerical analysis of reinforcement effect of slope anti-slide pile on expressway reconstruction projection[J]. Journal of Central South University(Science and Technology), 2015, 46(6): 2244-2249.
[14] 肖东, 蒋关鲁, 林展展, 等. 过渡段地基加固作用对桥台桩工作性状的影响分析[J]. 中南大学学报(自然科学版), 2017, 48(3): 820-829. XIAO Dong, JIANG Guanlu, LIN Zhanzhan, et al. Analysis on working properties of abutment piles considering foundation reinforcement of approach embankment[J]. Journal of Central South University(Science and Technology), 2017, 48(3): 820-829.
[15] 凌同华,张胜,李升冉, 等. 邻近隧道施工既有桥桩变形控制及注浆加固方案优化[J]. 中南大学学报(自然科学版), 2014, 45(7): 2394-2400. LING Tonghua, ZHANG Sheng, LI Shengran, et al. Controlling of existing bridge piles deformation induced by adjacent tunneling and scheme of optimizing grouting reinforcement[J]. Journal of Central South University(Science and Technology), 2014, 45(7): 2394-2400.
[16] 南京水利科学研究院.土工试验规程:SL237—1999[S]. 北京:中国水利水电出版社,1999.
[17] 张健,李召峰,李术才,等. 基于抗崩解特性的全风化花岗岩地层注浆参数设计方法[J]. 工程科学与技术, 2019, 51(5): 87-95. ZHANG Jian, LI Zhaofeng, LI Shucai, et al. Grouting parameters design method of completely weathered granite based on anti-disintegration characteristics[J]. Journal of Sichuan University(Engineering Science Edition), 2019, 51(5): 87-95.
[18] 杨磊, 林荣峰, 李召峰, 等. 水泥浆液黏度对全风化花岗岩注浆加固效果的影响[J]. 中国公路学报, 2018, 31(10): 246-254. YANG Lei, LIN Rongfeng, LI Zhaofeng, et al. Influence of grout viscosity on the grouting reinforcement effect of completely weathered granite[J]. China Journal of Highway and Transport, 2018, 31(10): 246-254.
[1] 朱晓天. 渗流作用下粉质黏土地层超深基坑危害数值模拟分析[J]. 隧道与地下工程灾害防治, 2022, 4(2): 98-106.
[2] 杨洪希,黄伟,王树英,令凡琳,刘朋飞. 粉质黏土地层土压平衡盾构渣土改良技术[J]. 隧道与地下工程灾害防治, 2020, 2(2): 76-82.
[1] QIAN Qihu. Scientific use of the urban underground space to construction the harmonious livable and beautiful city[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 1 -7 .
[2] DENG Mingjiang, LIU Bin. Challenges, countermeasures and development direction of geological forward-prospecting for TBM cluster tunneling in super-long tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 8 -19 .
[3] DING Xiuli, ZHANG Yuting, ZHANG Chuanjian, YAN Tianyou, HUANG Shuling. Review on countermeasures and their adaptability evaluation to tunnels crossing active faults[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 20 -35 .
[4] JIAO Yuyong, ZHANG Weishe, OU Guangzhao, ZOU Junpeng, CHEN Guanghui. Review of the evolution and mitigation of the water-inrush disaster in drilling-and-blasting excavated deep-buried tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 36 -46 .
[5] ZHANG Qingsong, ZHANG Lianzhen, LI Peng, FENG Xiao. New progress in grouting reinforcement theory of water-rich soft stratum in underground engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 47 -57 .
[6] XIA Kaiwen, XU Ying, CHEN Rong. Dynamic tests of rocks subjected to simulated deep underground environments[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 58 -75 .
[7] HONG Kairong. Study on rock breaking and wear of TBM hob in high-strength high-abrasion stratum[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 76 -85 .
[8] TAN Zhongsheng. Application experimental study of high-strength lattice girders with heat treatment in tunnel engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 86 -92 .
[9] CHEN Jianxun, LUO Yanbin. The stability of structure and its control technology for lager-span loess tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 93 -101 .
[10] JING Hongwen, YU Liyuan, SU Haijian, GU Jincai, YIN Qian. Development and application of catastrophic experiment system for water inrush in surrounding rock of deep tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 102 -110 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn