Please wait a minute...
 
隧道与地下工程灾害防治  2022, Vol. 4 Issue (4): 59-67    DOI: 10.19952/j.cnki.2096-5052.2022.04.08
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
基于亚塑性本构模型的砂土剪切特性分析
王智1,吴洋1,朱先发1,邓人铭2,张冰利2
1.南通城市轨道交通有限公司, 江苏 南通 226007;2.同济大学地下建筑与工程系, 上海 200092
Analysis of shear properties of sandy soil based on hypoplastic constitutive model
WANG Zhi1, WU Yang1, ZHU Xianfa1, DENG Renming2, ZHANG Bingli2
1. Nantong Urban Rail Transit Co., Ltd., Nantong 226007, Jiangsu, China;
2. Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China
下载:  PDF (8350KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了探究砂土的剪切特性,通过有限元方法,采用亚塑性本构模型模拟砂土的三轴压缩试验并进行准确性验证。利用该模型分析砂土土体初始条件对砂土剪切力学特性的影响。研究结果表明亚塑性模型准确性较高,能够反映砂土在三轴压缩试验下的应力-应变关系,且砂土的围压和密实度对砂土在剪切时的硬化特性和剪缩现象有显著影响。基于模拟计算结果进一步分析亚塑性本构模型中各个参数对砂土剪切过程中偏应力和体积应变的影响,发现颗粒硬度等4个指标对砂土剪切时偏应力和体积应变的影响非常大。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王智
吴洋
朱先发
邓人铭
张冰利
关键词:  砂土  剪切特性  三轴压缩试验  亚塑性本构    
Abstract: In order to explore the shear characteristics of sand, the finite element method was used to simulate the triaxial compression experiment of sand with a subplastic constitutive model and the accuracy was verified. The model was used to carry out some analysis on the influence of the initial conditions of the sandy soil on the shear mechanical properties of the sandy soil. The research results showed that the model had high accuracy and could reflect the stress-strain relationship of sand under triaxial compression experiments, and the confining pressure and compactness of sand had significant effects on the hardening characteristics and shearing phenomenon of sand during shearing impact. Based on the simulation results, the effects of various parameters in the hypoplastic constitutive model on the deviatoric stress and volumetric strain during the shearing process of sand were further analyzed.
Key words:  sand    shear property    triaxial compression experiment    hypoplastic constitutive model
收稿日期:  2022-08-30      修回日期:  2022-11-08      发布日期:  2022-12-20     
中图分类号:  TU43  
作者简介:  王智(1970— ),男,江苏南通人,硕士,高级工程师,主要研究方向为工程建设和运营. E-mail:wznt2008@163.com
引用本文:    
王智, 吴洋, 朱先发, 邓人铭, 张冰利. 基于亚塑性本构模型的砂土剪切特性分析[J]. 隧道与地下工程灾害防治, 2022, 4(4): 59-67.
WANG Zhi, WU Yang, ZHU Xianfa, DENG Renming, ZHANG Bingli. Analysis of shear properties of sandy soil based on hypoplastic constitutive model. Hazard Control in Tunnelling and Underground Engineering, 2022, 4(4): 59-67.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2022/V4/I4/59
[1] 蒋明镜,石安宁,刘俊,等.结构性砂土力学特性三维离散元分析[J].岩土工程学报,2019,41(增刊2):1-4. JIANG Mingjing, SHI Anning, LIU Jun, et al. Three-dimensional distinct element analysis of mechanical properties of structured sands[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(Suppl.2): 1-4.
[2] BOUKPETI N, DRESCHER A. Triaxial behavior of refined superior sand model[J]. Computers and Geotechnics, 2000, 26(1): 65-81.
[3] 周睿博. 砂土静态液化本构模型及参数确定[D].大连: 大连理工大学, 2006. ZHOU Ruibo. Constitutive model for static liquefaction of sand and parameters determination[D]. Dalian: Dalian University of Technology, 2006.
[4] LI X S, DAFALIAS Y F. Dilatancy for cohesionless soils[J]. Géotechnique, 2000, 50(4): 449-460.
[5] DAFALIAS Y F. Bounding surface plasticity.i: mathematical foundation and hypoplasticity[J]. Journal of Engineering Mechanics, 1986, 112(9): 966-987.
[6] Gudehus G. A comparison of some constitutive laws for soils under radially symmetric loading and unloading[J]. Numerical Methods in Geomechanics, 1979: 1309-1323.
[7] GUDEHUS G. Constitutive relations for granulate-liquid mixtures with a pectic constituent[J]. Mechanics of Materials, 1996, 22(2): 93-103.
[8] GUDEHUS G. A comprehensive constitutive equation for granular materials[J]. Soils and Foundations, 1996, 36(1): 1-12.
[9] BAUER E. Calibration of a comprehensive hypoplastic model for granular materials[J]. Soils and Foundations, 1996, 36(1): 13-26.
[10] MASÍN D. A hypoplastic constitutive model for clays[J]. International Journal for Numerical & Analytical Methods in Geomechanics, 2005, 29(4): 311-336.
[11] VON WOLFFERSDORFF P A. A hypoplastic relation for granular materials with a predefined limit state surface[J]. Mechanics of Cohesive-Frictional Materials, 1996, 1(3): 251-271.
[1] 房倩,杜建明,王赶,王中举,王官清. 砂土隧道开挖地层变形规律及影响因素分析[J]. 隧道与地下工程灾害防治, 2020, 2(3): 67-76.
[2] 刘宏达,杨天亮,张冬梅. 基于离散元分析的砂土深埋盾构隧道土压力计算方法[J]. 隧道与地下工程灾害防治, 2020, 2(2): 31-40.
[1] QIAN Qihu. Scientific use of the urban underground space to construction the harmonious livable and beautiful city[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 1 -7 .
[2] DENG Mingjiang, LIU Bin. Challenges, countermeasures and development direction of geological forward-prospecting for TBM cluster tunneling in super-long tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 8 -19 .
[3] DING Xiuli, ZHANG Yuting, ZHANG Chuanjian, YAN Tianyou, HUANG Shuling. Review on countermeasures and their adaptability evaluation to tunnels crossing active faults[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 20 -35 .
[4] JIAO Yuyong, ZHANG Weishe, OU Guangzhao, ZOU Junpeng, CHEN Guanghui. Review of the evolution and mitigation of the water-inrush disaster in drilling-and-blasting excavated deep-buried tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 36 -46 .
[5] ZHANG Qingsong, ZHANG Lianzhen, LI Peng, FENG Xiao. New progress in grouting reinforcement theory of water-rich soft stratum in underground engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 47 -57 .
[6] XIA Kaiwen, XU Ying, CHEN Rong. Dynamic tests of rocks subjected to simulated deep underground environments[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 58 -75 .
[7] HONG Kairong. Study on rock breaking and wear of TBM hob in high-strength high-abrasion stratum[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 76 -85 .
[8] TAN Zhongsheng. Application experimental study of high-strength lattice girders with heat treatment in tunnel engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 86 -92 .
[9] CHEN Jianxun, LUO Yanbin. The stability of structure and its control technology for lager-span loess tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 93 -101 .
[10] JING Hongwen, YU Liyuan, SU Haijian, GU Jincai, YIN Qian. Development and application of catastrophic experiment system for water inrush in surrounding rock of deep tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 102 -110 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn