Please wait a minute...
 
隧道与地下工程灾害防治  2022, Vol. 4 Issue (4): 68-78    DOI: 10.19952/j.cnki.2096-5052.2022.04.09
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
临近基坑地下供水管网变形破坏预警模型
林明熠1,2,刘芳1,2*,孔维钧1,2
1.同济大学土木工程防灾国家重点实验室, 上海 200092;2.同济大学岩土及地下工程教育部重点实验室, 上海 200092
A warning model for underground pipeline damage caused by adjacent excavation
LIN Mingyi1,2, LIU Fang1,2*, KONG Weijun1,2
1. State Key Laboratory of Disaster Reduction in Civil Engineering, Shanghai 200092, China;
2. Key Laboratory of Geotechnical and Underground Engineering of the Ministry of Education, Shanghai 200092, China
下载:  PDF (836KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 为及时对地下供水管线在临近基坑开挖导致地层变形影响下的变形破坏进行告警,弥补现有市政管线信息管理平台在面向临近施工扰动监测智能预警服务模块方面的不足,基于基坑周边位移场计算理论和地下管线破坏判定准则,建立基于基坑监测数据的地下供水管线变形破损预警模型及数字化流程,基于同济大学自主研发的基础设施智慧服务系统(iS3)开发相应的微服务模块,依托工程实例,实现临近基坑地下供水管线的变形实时估算与破坏预警,并为极端情况中地下供水管线安全分析提供风险场景的推演工具。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
林明熠
刘芳
孔维钧
关键词:  临近施工  管线破损识别与预警  智慧系统  微服务    
Abstract: In order to timely alarm the deformation and damage of underground water supply pipelines under the influence of the stratum deformation caused by the excavation of the adjacent foundation pit, and make up for the deficiencies of the existing municipal pipeline information management platforms in the intelligent early warning service module for the monitoring of adjacent construction disturbances, the theory of the displacement field calculation around the foundation pit and the underground pipeline failure criterion was introduced, based on which, a warning model and the corresponding digital procedure for the damage of deformed underground water supply pipelines utilizing the monitoring data of the foundation pit was established. The corresponding microservice module was developed based on the infrastructure Smart Service System(iS3)independently developed by Tongji University. The real-time deformation estimation and damage warning of underground water supply pipelines near the foundation pit were achieved in an engineering project, which provided a tool for the risk scenario deduction for the safety analysis on underground water supply pipelines in extreme cases.
Key words:  adjacent construction    recognition and early warning of pipeline damage    smart system    microservice
收稿日期:  2022-06-20      修回日期:  2022-09-30      发布日期:  2022-12-20     
中图分类号:  TU990.3  
基金资助: 基金项目:国家重点研发计划资助项目(2020YFB2103300)
通讯作者:  刘芳(1978— ),女,广东河源人,博士,教授,博士生导师,主要研究方向为岩土工程AI赋能.    E-mail:  liufang@tongji.edu.cn
作者简介:  林明熠(1998— ),男,天津人,硕士研究生,主要研究方向为岩土工程. E-mail:2032427@tongji.edu.cn.
引用本文:    
林明熠, 刘芳, 孔维钧. 临近基坑地下供水管网变形破坏预警模型[J]. 隧道与地下工程灾害防治, 2022, 4(4): 68-78.
LIN Mingyi, LIU Fang, KONG Weijun. A warning model for underground pipeline damage caused by adjacent excavation. Hazard Control in Tunnelling and Underground Engineering, 2022, 4(4): 68-78.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2022/V4/I4/68
[1] 林必毅,苏聪,眭小红. 智慧城市建设现状与发展趋势探讨[C] //智慧城市与轨道交通2020. 北京: 中国建筑工业出版社, 2020: 2-5. LIN Biyi, SU Cong, SUI Xiaohong. Discussion on the current situation and development trend of smart city construction[C] //Smart City and Rail Transit 2020. Beijing: China Architecture & Building Press, 2020: 2-5.
[2] 谢晓华. 以供水厂网一体化发展为思路,推进智慧水务建设——泉州水司“供水一张图”平台建设[J]. 海峡科技与产业, 2020(4): 65-67.
[3] 张慧娟,刘菁华. 海淀区水务大脑建设思考[J]. 北京水务, 2021(增刊2): 9-13. ZHANG Huijuan, LIU Jinghua. Reflections on the construction of water brain in Haidian district[J] Beijing Water, 2021(Suppl.2): 9-13.
[4] 郑世雄,杜乃成,王君,等. 天津市二次供水智慧管控系统的应用实践[J]. 给水排水, 2017, 53(10): 125-129. ZHENG Shixiong, DU Naicheng, WANG Jun, et al. The application of Tianjin secondary water supply intelligent management & control system[J]. Water & Wastewater Engineering, 2017, 53(10): 125-129.
[5] 薛斌彬. 浅谈青浦区供水管网分区计量管理的现状及展望[J]. 净水技术, 2020, 39(增刊2): 111-116. XUE Binbin. Discussion on current situation and prospects of DMA district metering project of water supply pipe network in Qingpu district[J]. Water Purification Technology, 2020, 39(Suppl.2): 111-116.
[6] 陈方亮. 洛阳北控智慧水务二次供水远程监控平台建设与运行[J]. 中国给水排水, 2016, 32(24): 59-61. CHEN Fangliang. Construction and operation of remote monitoring platform for smart secondary water supply in Luoyang[J]. China Water & Wastewater, 2016, 32(24): 59-61.
[7] 马少俊,李鑫家,王乔坎,等. 某深基坑开挖对邻近既有盾构隧道影响实测分析[J]. 隧道与地下工程灾害防治, 2022, 4(1): 86-94. MA Shaojun, LI Xinjia, WANG Qiaokan, et al. Influence of deep excavation on adjacent existing shield tunnel: field measurement and analysis[J]. Hazard Control in Tunnelling and Underground Engineering, 2022, 4(1): 86-94.
[8] 徐长节,朱怀龙,龙莉波,等. 深基坑隔离桩对坑外既有隧道保护效果分析[J]. 隧道与地下工程灾害防治, 2019, 1(1): 107-114. XU Changjie, ZHU Huailong, LONG Libo, et al. Protection effect analysis of isolation pile for deep foundation pit on existing tunnel outside the pit[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 107-114.
[9] 张陈蓉,俞剑,黄茂松. 基坑开挖对邻近地下管线影响的变形控制标准[J]. 岩土力学, 2012, 33(7): 2027-2034. ZHANG Chenrong, YU Jian, HUANG Maosong. Deformation controlling criterion of effect on underground pipelines due to foundation pit excavation[J]. Rock and Soil Mechanics, 2012, 33(7): 2027-2034.
[10] OU C Y, HSIEH P G, CHIOU D C. Characteristics of ground surface settlement during excavation[J]. Canadian Geotechnical Journal, 1993, 30(5): 758-767.
[11] HSIEH P G, OU C Y. Shape of ground surface settlement profiles caused by excavation[J]. Canadian Geotechnical Journal, 1998, 35(6): 1004-1017.
[12] 木林隆,黄茂松. 基坑开挖引起的周边土体三维位移场的简化分析[J]. 岩土工程学报, 2013, 35(5): 820-827. MU Linlong, HUANG Maosong. Simplified method for analysis of soil movement induced by excavations[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(5): 820-827.
[13] 华东建筑设计研究院有限公司,上海建工集团股份有限公司.基坑工程技术标准: DGTJ08-61-2018 [S]. 上海: 同济大学出版社, 2018.
[14] 韩煊,雷崇红,张鹏. 隧道开挖引起管线沉降计算的刚度修正法[J]. 土木建筑与环境工程, 2012, 34(3): 21-27. HAN Xuan, LEI Chonghong, ZHANG Peng. A modified stiffness approach to predicit tunneling-induced deformation and force of pipelines[J]. Journal of Civil, Architectural & Environmental Engineering, 2012, 34(3): 21-27.
[15] 济南大学,荣华建设集团有限公司. 建筑基坑工程监测技术标准: GB50497—2019 [S]. 北京: 中国计划出版社, 2019.
[16] 中国建筑科学研究院,北京市勘察设计研究院有限公司.北京市建筑基坑支护技术规程: DB11 489-2016 [S]. 北京: 中国城市出版社, 2016.
[17] 广东省基础工程集团有限公司,广东省建筑工程集团有限公司.广东省建筑基坑工程技术规程: DBJT15-20-2016 [S]. 北京: 中国城市出版社, 2017.
[18] 上海岩土工程勘察设计研究院有限公司.上海市基坑工程施工监测规程: DG/TJ08-2001-2016 [S]. 上海: 同济大学出版社, 2016.
[19] 张鹏, 韩煊. 地铁施工作用下地下管线变形损坏控制标准研究[C] //第2届全国工程安全与防护学术会议论文集. 南京: 中国岩石力学与工程学会工程安全与防护分会,2019: 152-158. ZHANG Peng, HAN Xuan. The study of control standards of deformation failure for underground pipeline under the subway construction[C] //Proceedings of the 2nd National Engineering Safety & Protection Academic Conference. Nanjing: Safety & Protection Branch of Chinese Society for Rock Mechanics & Engineering, 2019: 152-158.
[20] 胡潮钢, 章晖, 叶武. 深基坑开挖对邻近地下管线影响研究[J]. 安徽建筑, 1981, 29(1): 120-122.
[21] 陈金平, 管相龙, 李玉坤,等. 基于数值模拟的变形管道应力分析及程序开发[J]. 实验技术与管理, 2021, 38(11): 130-137. CHEN Jinping, GUAN Xianglong, LI Yukun, et al. Stress analysis and program development of deformed pipeline based on numerical simulation[J]. Experimental Technology and Management, 2021, 38(11): 130-137.
[22] CHANG H L, LAN Y J, HE B, et al. Numerical simulation of strength failure of buried polyethylene water supply pipe under subsoil settlement[J]. Journal of Failure Analysis and Prevention, 2021, 21(5): 1838-1854.
[23] 何小龙, 杨天鸿, 周云伟, 等. 考虑管-土分离的基坑开挖引起邻近地下管线位移分析[J]. 土木与环境工程学报(中英文), 2019, 41(6): 9-16. HE Xiaolong, YANG Tianhong, ZHOU Yunwei, et al. Analysis of pipeline displacement induced by adjoining foundation pit excavation considering pipeline-soil separation[J]. Journal of Civil and Environmental Engineering, 2019, 41(6): 9-16.
[24] 朱合华, 李晓军, 林晓东. 基础设施智慧服务系统(iS3)及其应用[J]. 土木工程学报, 2018, 51(1): 1-12. ZHU Hehua, LI Xiaojun, LIN Xiaodong. Infrastructure smart service system(iS3)and its application[J]. China Civil Engineering Journal, 2018, 51(1): 1-12.
[25] 李晓军, 林晓东, 朱合华, 等. 基于微服务架构的基础设施智慧服务系统设计[C] //中国土木工程学会2018年学术年会论文集. 天津: 中国建筑工业出版社, 2018: 213-227. LI Xiaojun, LIN Xiaodong, ZHU Hehua, et al. Design of infrastructure smart service system based on microservice architecture[C] //Proceedings of 2018 Academic Annual Meeting of China Civil Engineering Society. Beijing: China Architecture & Building Press, 2018: 213-227.
[26] 李东晓, 陈诗. 基于微服务架构的多向型轨道建设管理系统应用研究[J]. 砖瓦世界, 2021(24): 187-188.
[27] 崔磊, 冯宇星, 石锋, 等. 气象信息决策支持系统微服务化改造及设计[J]. 网络安全技术与应用, 2021(3): 117-119.
[28] ZHOU S H, YANG Y F, NG S T, et al. Integrating data-driven and physics-based approaches to characterize failures of interdependent infrastructures[J]. International Journal of Critical Infrastructure Protection, 2020, 31: 100391.
[29] TAN Y, LONG Y Y. Review of cave-in failures of urban roadways in China: a database[J]. Journal of Performance of Constructed Facilities, 2021, 35(6): 1-20.
[30] ZHANG C, OH J, PARK K. Evaluation of sewer network resilience index under the perspective of ground collapse prevention[J]. Water Science and Technology, 2022, 85(1): 188-205.
[31] YONG T, YE L. Responses of shallowly buried pipelines to adjacent deep excavations in Shanghai soft ground[J]. Journal of Pipeline Systems Engineering and Practice, 2018, 9(2):1-14.
[1] 王复明,李斌,方宏远. 含脱空、腐蚀病害地下管道高聚物注浆修复试验与数值研究[J]. 隧道与地下工程灾害防治, 2019, 1(3): 1-8.
[2] 王复明, 李斌, 方宏远. 含脱空、腐蚀病害管道高聚物注浆修复试验与数值研究[J]. 隧道与地下工程灾害防治, 0, (): 1-8.
[3] 张稳军,朱战魁,李瑶,张高乐. 冲蚀空洞对埋地供水管道力学性能的影响研究[J]. 隧道与地下工程灾害防治, 2020, 2(3): 36-47.
[1] QIAN Qihu. Scientific use of the urban underground space to construction the harmonious livable and beautiful city[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 1 -7 .
[2] DENG Mingjiang, LIU Bin. Challenges, countermeasures and development direction of geological forward-prospecting for TBM cluster tunneling in super-long tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 8 -19 .
[3] DING Xiuli, ZHANG Yuting, ZHANG Chuanjian, YAN Tianyou, HUANG Shuling. Review on countermeasures and their adaptability evaluation to tunnels crossing active faults[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 20 -35 .
[4] JIAO Yuyong, ZHANG Weishe, OU Guangzhao, ZOU Junpeng, CHEN Guanghui. Review of the evolution and mitigation of the water-inrush disaster in drilling-and-blasting excavated deep-buried tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 36 -46 .
[5] ZHANG Qingsong, ZHANG Lianzhen, LI Peng, FENG Xiao. New progress in grouting reinforcement theory of water-rich soft stratum in underground engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 47 -57 .
[6] XIA Kaiwen, XU Ying, CHEN Rong. Dynamic tests of rocks subjected to simulated deep underground environments[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 58 -75 .
[7] HONG Kairong. Study on rock breaking and wear of TBM hob in high-strength high-abrasion stratum[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 76 -85 .
[8] TAN Zhongsheng. Application experimental study of high-strength lattice girders with heat treatment in tunnel engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 86 -92 .
[9] CHEN Jianxun, LUO Yanbin. The stability of structure and its control technology for lager-span loess tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 93 -101 .
[10] JING Hongwen, YU Liyuan, SU Haijian, GU Jincai, YIN Qian. Development and application of catastrophic experiment system for water inrush in surrounding rock of deep tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 102 -110 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn