Please wait a minute...
 
隧道与地下工程灾害防治
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
煤矿巷道储油技术体系研究及应用
韩桂武1,郭书太1,周锐2*
(1.中国石油天然气管道工程有限公司 河北 廊坊 065000;2.河南理工大学能源学院 河南 焦作 454000)
Research and application of coal mine roadway oil storage technology system
HAN Guiwu1,GUO Shutai1ZHOU Rou2*
(1.China National Petroleum Pipeline Engineering Company Limited, Langfang 065000, Hebei, China;2.College of Energy, Henan Polytechnic University, Jiaozuo 454000, Henan, China)
下载:  PDF (1803KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了深入理解煤矿巷道储油改建工程的设计原理和关键技术,通过文献综述和具体储油工程案例归纳总结出煤矿巷道建库的关键技术及其工程应用情况:用于储油的废弃矿井选址需保证矿区地壳稳定,地质构造简单,巷道围岩岩石为坚硬岩或较坚硬岩,巷道围岩完整或较完整,围岩岩体透水性弱、有稳定地下水位;煤矿巷道围岩的渗透率离散性较大、局部或整体不满足围岩水压大于储库内油、气压之和,即Pw>Po+ Pg时,需通过降低岩体的渗透性和流体动力遏制法进行改建,实现对储库巷道的包裹进而控制油品的泄漏;计算煤矿巷道储油能力时,需考虑巷道地质条件、水幕系统、储油库泵坑、水垫层及封堵断面等空间占用的修正系数,还应综合附近港口码头运输的油品供给量,最终确定煤矿巷道储油库的建设规模。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
韩桂武
郭书太
周锐
关键词:  废弃煤矿  地下储油库  水封性  地下空间利用  储油技术体系    
Abstract: In order to deeply understand the design principle and key technology of coal mine roadway oil storage and reconstruction project, the key technologies and engineering applications of coal mine roadway storage and reconstruction engineering were summarized through literature review and specific oil storage engineering cases.The site selection of the abandoned mine for oil storage should ensure that the crust of the mining area was stable, the geological structure was simple, the surrounding rock of the roadway was hard rock or relatively hard rock, the surrounding rock of the roadway was complete or relatively complete, the surrounding rock was weak in permeability and had a stable groundwater level.When the permeability of the surrounding rock of coal mine roadway was relatively discrete, and the water pressure of the surrounding rock was greater than the sum of oil and air pressure in the reservoir, it is necessary to reduce the permeability of the rock mass and carry out reconstruction by hydrodynamic containment method to realize the encapsulation of the roadway of the reservoir and control the leakage of oil products.When calculating the oil storage capacity of the coal mine roadway, it is necessary to consider the geological conditions of the roadway, the water curtain system, the corrective coefficient of the space occupied by the pump pit, the water bedding layer, and the blocking section of the oil storage reservoir, and also the oil supply volume transported from the nearby ports and wharves, so as to finalize the scale of the construction of the oil storage reservoir of coal mine roadway.
Key words:  abandoned coal mine    underground oil storage depot    water sealing    underground space utilization    oil storage technology system
收稿日期:  2023-05-04      修回日期:  2023-06-25      发布日期:  2023-09-08     
中图分类号:  U43  
基金资助: 国家自然科学基金资助项目(51779045, 41572293);中国科学院大学生创新实践训练计划资助项目(Y110061Q01)
通讯作者:  周锐(1999—),男,河南信阳人,硕士研究生,主要研究方向为岩土工程和地下工程。    E-mail:  yinongpax@home.hpu.edu.cn
作者简介:  韩桂武(1977—),男,河北保定人,博士,高级工程师,主要研究方向为地下岩土工程设计及地震灾害管道应力分析。E-mail:hanguiwu@cnpc.com.cn
引用本文:    
韩桂武, 郭书太, 周锐. 煤矿巷道储油技术体系研究及应用[J]. 隧道与地下工程灾害防治, .
HAN Guiwu, GUO Shutai, ZHOU Rou. Research and application of coal mine roadway oil storage technology system. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1-.
链接本文:  
[1] 林颖, 王国波, 施龙飞, 王建宁. 近距离空间曲线隧道群地震响应研究[J]. 隧道与地下工程灾害防治, 0, (): 1-0.
[2] 胡记磊, 张缜, 杨兵. 临空液化场地中地铁车站侧移及上浮规律[J]. 隧道与地下工程灾害防治, 0, (): 1-0.
[3] 王建圣, 蒋志斌, 李丽超. 隧道岩体贯通节理面注浆加固力学响应特征[J]. 隧道与地下工程灾害防治, 2023, 5(2): 80-88.
[4] 王秋哲, 韩瑞, 白笑笑, 赵 凯. 锁定回填下沉管隧道地震稳定性[J]. 隧道与地下工程灾害防治, 0, (): 1-.
[5] 李荣建, 李浩泽, 白维仕, 王磊, 张瑾. 潜在滑动面对隧道衬砌承载特性影响的模型试验研究[J]. 隧道与地下工程灾害防治, 2021, 3(4): 1-8.
[6] 潘鹏志, 梅万全. 基于CASRock的工程岩体动力响应分析方法、软件与应用[J]. 隧道与地下工程灾害防治, 2021, 3(3): 1-10.
[7] 刘润,黄旋智,袁宇,马鹏程. 土体弱化对海上风电单桩基础的影响研究[J]. 隧道与地下工程灾害防治, 2019, 1(4): 56-63.
[8] 蔡国军, 刘路路, 龚申, 刘松玉. 基于CPTU测试的海相软土刚性桩复合地基承载特性研究[J]. 隧道与地下工程灾害防治, 2019, 1(3): 46-56.
[9] 庄海洋, 付继赛, 朱明轩, 陈苏, 陈国兴. 柱顶设置滑移支座时地铁地下车站结构抗震性能分析[J]. 隧道与地下工程灾害防治, 2019, 1(3): 57-67.
[10] 赵志宏, 郭铁成, 林涛, 陈思聪. 考虑粗糙度影响的裂隙岩体开挖损伤区分布规律[J]. 隧道与地下工程灾害防治, 2019, 1(3): 77-86.
[11] 丁秀丽, 张雨霆, 张传健, 颜天佑, 黄书岭. 隧洞穿越活动断层应对措施及其适应性研究综述[J]. 隧道与地下工程灾害防治, 2019, 1(1): 20-35.
[12] 靖洪文,蔚立元,苏海健,顾金才,尹乾. 深部隧(巷)道围岩突水灾变演化试验系统研制及应用[J]. 隧道与地下工程灾害防治, 2019, 1(1): 102-110.
[13] 李鹏飞,刘宏翔,赵勇,刘建友,王帆. 隧道穿越断层破碎带防突水最小安全厚度及其影响因素[J]. 隧道与地下工程灾害防治, 2020, 2(3): 77-84.
[14] 魏纲,黄时雨,蒋丞武,虞兴福,王新泉. 上软下硬地层盾构工作井开挖受力与变形监测分析[J]. 隧道与地下工程灾害防治, 2020, 2(4): 29-36.
[15] 仇文革, 黄海昀, 闫飞跃, 孙克国. 基于能量原理的上覆饱水砂层隧道突水灾变[J]. 隧道与地下工程灾害防治, 2021, 3(1): 1-11.
[1] QIAN Qihu. Scientific use of the urban underground space to construction the harmonious livable and beautiful city[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 1 -7 .
[2] DENG Mingjiang, LIU Bin. Challenges, countermeasures and development direction of geological forward-prospecting for TBM cluster tunneling in super-long tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 8 -19 .
[3] DING Xiuli, ZHANG Yuting, ZHANG Chuanjian, YAN Tianyou, HUANG Shuling. Review on countermeasures and their adaptability evaluation to tunnels crossing active faults[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 20 -35 .
[4] JIAO Yuyong, ZHANG Weishe, OU Guangzhao, ZOU Junpeng, CHEN Guanghui. Review of the evolution and mitigation of the water-inrush disaster in drilling-and-blasting excavated deep-buried tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 36 -46 .
[5] ZHANG Qingsong, ZHANG Lianzhen, LI Peng, FENG Xiao. New progress in grouting reinforcement theory of water-rich soft stratum in underground engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 47 -57 .
[6] XIA Kaiwen, XU Ying, CHEN Rong. Dynamic tests of rocks subjected to simulated deep underground environments[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 58 -75 .
[7] HONG Kairong. Study on rock breaking and wear of TBM hob in high-strength high-abrasion stratum[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 76 -85 .
[8] TAN Zhongsheng. Application experimental study of high-strength lattice girders with heat treatment in tunnel engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 86 -92 .
[9] CHEN Jianxun, LUO Yanbin. The stability of structure and its control technology for lager-span loess tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 93 -101 .
[10] JING Hongwen, YU Liyuan, SU Haijian, GU Jincai, YIN Qian. Development and application of catastrophic experiment system for water inrush in surrounding rock of deep tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 102 -110 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn