Please wait a minute...
 
隧道与地下工程灾害防治  2023, Vol. 5 Issue (1): 74-80    DOI: 10.19952/j.cnki.2096-5052.2023.01.08
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
边墙与仰拱连接处缺陷对隧道结构影响试验
周旭明1,2,石钰锋1,2*,张利敏1,2,张慧鹏3,曹成威1,2,陈昭阳1,2
(1.华东交通大学江西省岩土工程基础设施安全与控制重点实验室, 江西 南昌 330013;2.江西省地下空间技术开发工程研究中心, 江西 南昌 330013;3.南昌轨道交通集团有限公司, 江西 南昌 330038
Experiment on influence of defects at the connection between side wall and inverted arch on tunnel structure
ZHOU Xuming1,2, SHI Yufeng1,2*, ZHANG Limin1,2, ZHANG Huipeng3, CAO Chengwei1,2, CHEN Zhaoyang1,2
(1. Jiangxi Key Laboratory of Infrastructure Safety Control in Geotechnical Engineering, East China Jiaotong University, Nanchang 330013, Jiangxi, China;2. Jiangxi Underground Space Technology Development Engineering Research Center, Nanchang 330013, Jiangxi, China;3. Nanchang Rail Transit Group Co., Ltd., Nanchang 330038, Jiangxi, China
下载:  PDF (4867KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 为研究不同形式缺陷对衬砌结构受力的影响,通过模型试验模拟不同形式的缺陷,分析衬砌结构不同部位弯矩、轴力与安全系数的变化。结果表明:边墙与仰拱连接处缺陷使衬砌拱腰与仰拱中部处的弯矩与轴力增大,拱顶处的弯矩与轴力减小,缺陷形式不同对衬砌不同部位的影响效果不同;当仅存在混凝土疏松缺陷或钢筋未连接缺陷时,衬砌结构受力的主要影响部位为拱腰与边墙,当两种缺陷共存时,拱顶与仰拱中部也受到较大影响;混凝土疏松缺陷对衬砌结构安全系数的影响总体上大于钢筋未连接缺陷,主要影响区域为拱腰与边墙两处,当两种缺陷共存时,拱腰与仰拱中部处安全系数的下降较明显,分别为52.03%与32.40%。缺陷对拱腰与仰拱中部处安全系数的影响效果大于拱顶与边墙处,施工时需严格控制此处混凝土浇筑质量,保证成型后的强度,并适当提高此处浇筑厚度,使其有较高的安全储备。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周旭明
石钰锋
张利敏
张慧鹏
曹成威
陈昭阳
关键词:  隧道衬砌  边墙  仰拱  缺陷  模型试验    
Abstract: In order to study the influence of different forms of defects on the stress of lining structure, through the model test, different forms of defects were simulated, and the changes of bending moment, axial force and safety factor at different parts of lining structure were analyzed. The results showed that the defects at the connection between the side wall and the inverted arch increased the bending moment and axial force at the middle of the lining arch waist and the inverted arch, and decreased the bending moment and axial force at the vault. According to the different forms of defects, the effects on different parts of the lining were different. When there were only concrete shrinkage defects or unconnected steel defects, the main influence parts of lining structure were haunch and side wall. When the two defects coexisted, the middle part of vault and inverted arch would also be greatly affected. The influence of concrete loose defects on the safety factor of lining structure was generally greater than that of unconnected defects of steel bars. The main influence areas were arch waist and side wall. When the two defects coexisted, the safety factor at the middle of arch waist and invert decreased obviously, which was 52.03% and 32.40% respectively. The effect of defects on the safety factor at the middle of the hance and inverted arch was greater than that at the vault and side wall. During construction, the quality of concrete pouring here should be strictly controlled to ensure the strength after forming, and the pouring thickness can be appropriately increased to make it have a higher safety reserve.
Key words:  tunnel lining    side wall    arch    defect    model test
收稿日期:  2022-11-10      修回日期:  2023-02-10      发布日期:  2023-03-20     
中图分类号:  TU45  
基金资助: 国家自然科学基金面上资助项目(42177162)
通讯作者:  石钰锋(1985— ),男,江西九江人,博士,副教授,硕士生导师,主要研究方向为隧道工程.    E-mail:  z17855827972@163.com
作者简介:  周旭明(1996— ),男,浙江宁波人,硕士研究生,主要研究方向为隧道工程. E-mail:1204370131@qq.com
引用本文:    
周旭明, 石钰锋, 张利敏, 张慧鹏, 曹成威, 陈昭阳. 边墙与仰拱连接处缺陷对隧道结构影响试验[J]. 隧道与地下工程灾害防治, 2023, 5(1): 74-80.
ZHOU Xuming, SHI Yufeng, ZHANG Limin, ZHANG Huipeng, CAO Chengwei, CHEN Zhaoyang. Experiment on influence of defects at the connection between side wall and inverted arch on tunnel structure. Hazard Control in Tunnelling and Underground Engineering, 2023, 5(1): 74-80.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2023/V5/I1/74
[1] 洪开荣,冯欢欢. 中国公路隧道近10年的发展趋势与思考[J]. 中国公路学报, 2020, 33(12):62-76. HONG Kairong, FENG Huanhuan. Development trends and views of highway tunnels in China over the past decade[J]. China Journal of Highways and Transport, 2020, 33(12): 62-76.
[2] 马伟斌,柴金飞. 运营铁路隧道病害检测、监测、评估及整治技术发展现状[J]. 隧道建设(中英文), 2019, 39(10):1553-1562. MA Weibin, CHAI Jinfei. Development status of disease detection, monitoring, evaluation and treatment technology of railway tunnels in operation[J]. Tunnel Construction, 2019, 39(10): 1553-1562.
[3] 李书静. 隧道二次衬砌矮边墙与边拱一次灌注施工技术[J]. 铁道工程学报, 2009, 26(5):80-83. LI Shujing. Construction technologies for secondary lining of the low wall and primary filling of the side arch of tunnel[J]. Journal of Railway Engineering Society, 2009, 26(5): 80-83.
[4] 赵广平. 新型组合弧形钢模板在高速铁路隧道仰拱整幅施工中的应用[J]. 隧道建设, 2010, 30(6):706-711. ZHAO Guangping. Application of new arc-shaped composite steel formwork in full-breadth construction of invert of high speed railway tunnel[J]. Tunnel Construction, 2010, 30(6): 706-711.
[5] 吴铭芳,春军伟. 富水软岩隧道仰拱病害的综合处治与设计反思[J]. 现代隧道技术, 2021, 58(6):233-243. WU Mingfang, CHUN Junwei. Comprehensive treatment scheme and design suggestion on inverted arch defects in water-rich soft rock tunnels[J]. Modern Tunnelling Technology, 2021, 58(6): 233-243.
[6] 汪洋,唐雄俊,谭显坤,等. 云岭隧道底鼓机理分析[J]. 岩土力学, 2010, 31(8):2530-2534. WANG Yang, TANG Xiongjun, TAN Xiankun, et al. Mechanism analysis of floor heave Yunling Tunnel[J]. Rock and Soil Mechanics, 2010, 31(8): 2530-2534.
[7] 杜明庆,张顶立,王旭春,等. 大断面隧道仰拱底鼓破坏模式[J]. 中国公路学报, 2018, 31(10):292-301. DU Mingqing, ZHANG Dingli, WANG Xuchun, et al. Failure modes of foor heave in large section tunnel invert[J]. China Journal of Highways and Transport, 2018, 31(10): 292-301.
[8] 石钰锋,傅琼华,庄锦彬,等. 有压隧洞仰拱与边墙连接弱化对衬砌支护特性的影响研究[J]. 江西水利科技, 2018,44(1):9-14. SHI Yufeng, FU Qionghua, ZHUANG Jinbin, et al. Study on the influence of the lining support characteristics of the pressure tunnel which has the weakened connection between the inverted arch and the side wall[J]. Jiangxi Hydraulic Science & Technology, 2018, 44(1): 9-14.
[9] 李德武,高峰,韩文峰. 列车振动下隧道基底合理结构型式的研究[J]. 岩石力学与工程学报, 2004, 23(13):2292-2297. LI Dewu, GAO Feng, HAN Wenfeng. Study on rational structure of railway tunnel bed under dynamic vibrative load[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(13): 2292-2297.
[10] 李德武,高峰. 隧道仰拱对列车振动衰减影响的研究[J]. 铁道学报, 1999, 21(4):60-63. LI Dewu, GAO Feng. Effects of inverted arch of tunnels on the attenuation of traffic vibration[J]. Journal of the China Railway Society, 1999, 21(4): 60-63.
[11] 程涛,张东明,孙福申,等. 季冻区山岭公路隧道冻胀力学特征数值模拟研究[J]. 自然灾害学报, 2018, 27(4):34-40. CHENG Tao, ZHANG Dongming, SUN Fushen, et al. Numerical simulation of mechanical characteristics of mountain road tunnel under frost heaving in seasonal frozen region[J]. Journal of Natural Disasters, 2018, 27(4): 34-40.
[12] 万利,周磊生,孙昌海. 隧道二次衬砌施工缝钢木组合端头模板研制及应用[J]. 现代隧道技术, 2019, 56(3):200-205. WAN Li, ZHOU Leisheng, SUN Changhai. Development and application of the steel-wood combined end formwork for construction joints of tunnel secondary lining[J]. Modern Tunnelling Technology, 2019, 56(3): 200-205.
[13] 周立霞,王昱之,王起才. 隧道衬砌施工缝、变形缝防水技术现状[J]. 兰州铁道学院学报, 2003, 22(4):101-104. ZHOU Lixia, WANG Yuzhi, WANG Qicai. The waterproofing status quo of construction and deformation cracks in tunnel concrete liner[J]. Journal of Lanzhou Jiaotong University, 2003, 22(4): 101-104.
[14] 袁文忠. 相似理论与静力学模型试验[M]. 成都:西南交通大学出版社, 1998: 21-40.
[15] 伍超,黄磊,陈中天,等. 大断面公路隧道二次衬砌受力特性模型试验[J]. 隧道建设(中英文), 2018, 38(6):977-985. WU Chao, HUANG Lei, CHEN Zhongtian, et al. Model test for mechanical characteristics of secondary lining of large cross-section highway tunnel[J]. Tunnel Construction, 2018, 38(6): 977-985.
[16] 中国建筑科学研究院. 普通混凝土配合比设计规程: JGJ 55—2011[S]. 北京:中国建筑工业出版社, 2011.
[17] 重庆交通科研设计院.公路隧道设计规范: JTG 3370.1—2018[S].北京: 人民交通出版社, 2018.
[1] 党晓宇, 马劲松. 基于桩板组合结构等代仰拱的公路隧道加固方案[J]. 隧道与地下工程灾害防治, 2023, 5(1): 90-96.
[2] 吕玺琳,赵庾成,曾盛. 砂层中盾构隧道开挖面稳定性物理模型试验[J]. 隧道与地下工程灾害防治, 2022, 4(3): 67-76.
[3] 张治国,程志翔,陈杰,吴钟腾,李云正. 盾构隧道接缝渗漏水诱发既有管线变形模型试验[J]. 隧道与地下工程灾害防治, 2022, 4(3): 77-91.
[4] 陈峰军,宗军良,王祺,禹海涛. 地面出入式超浅埋盾构隧道静力响应模型试验[J]. 隧道与地下工程灾害防治, 2022, 4(2): 66-72.
[5] 周勇, 李召峰, 左志武, 王川, 王钰鑫, 林春金, 张新, 张乾青, 姚望, 王凯. 桩侧注浆提升粉质黏土地层既有桩基承载力试验研究[J]. 隧道与地下工程灾害防治, 2022, 4(1): 38-47.
[6] 张姣龙,高一民,张建,周浩,潘野,柯磊, 柳献. 一种模拟盾构刀盘破岩过程的模型试验设计原理和方法[J]. 隧道与地下工程灾害防治, 2021, 3(4): 20-28.
[7] 李荣建,李浩泽,白维仕,王磊,张瑾. 潜在滑动面对隧道衬砌承载特性影响的模型试验研究[J]. 隧道与地下工程灾害防治, 2021, 3(4): 1-8.
[8] 蒋宇静,张学朋. 纤维增强聚合物水泥砂浆基复合材料在运营隧道衬砌中加固效果评价[J]. 隧道与地下工程灾害防治, 2020, 2(1): 11-19.
[9] 张治国, 张洋彬, 王志伟, 方蕾, 马少坤, 师敏之, 魏纲. 类矩形截面隧道开挖诱发邻近管线变形模型试验与数值模拟研究[J]. 隧道与地下工程灾害防治, 2019, 1(4): 85-96.
[1] QIAN Qihu. Scientific use of the urban underground space to construction the harmonious livable and beautiful city[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 1 -7 .
[2] ZHOU Caigui, LI Jing, LIANG Qingguo, CHEN Kelin. Comparison of water inflow prediction methods of hydraulic diversion tunnels during construction[J]. Hazard Control in Tunnelling and Underground Engineering, 2023, 5(1): 32 -44 .
[3] LIN Ying, WANG Guobo, SHI Longfei, WANG Jianning. Seismic Response Study of Close Space Curve Tunnel Cluster[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -0 .
[4] YU Haisui, ZHUANG Peizhi. Cavity contraction theory and its application to tunnelling[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(4): 13 -32 .
[5] LIU Run, HUANG Xuanzhi, YUAN Yu, MA Pengcheng. Study of soil degradation effects on offshore wind turbine with large-diameter pile foundation[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(4): 56 -63 .
[6] HAN Guiwu, GUO Shutai, ZHOU Rou. Research and application of coal mine roadway oil storage technology system[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 .
[7] ZONG Junliang, RAO Qian, WANG Qi, YU Haitao. Numerical simulation of the dynamic response of ground penetrating ultra shallow-buried shield tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 .
[8] DING Xiuli, ZHANG Yuting, ZHANG Chuanjian, YAN Tianyou, HUANG Shuling. Review on countermeasures and their adaptability evaluation to tunnels crossing active faults[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 20 -35 .
[9] HONG Kairong. Study on rock breaking and wear of TBM hob in high-strength high-abrasion stratum[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 76 -85 .
[10] TAN Zhongsheng. Application experimental study of high-strength lattice girders with heat treatment in tunnel engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 86 -92 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn