Please wait a minute...
 
隧道与地下工程灾害防治  2023, Vol. 5 Issue (3): 52-62    DOI: 10.19952/j.cnki.2096-5052.2023.03.06
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
临空液化场地中地铁车站侧移及上浮规律
胡记磊1,2,张缜2,杨兵2
1. 三峡大学三峡库区地质灾害教育部重点实验室, 湖北 宜昌 443002;2. 三峡大学土木与建筑学院, 湖北 宜昌 443002
Lateral displacement and uplift of the subway station near the free face in liquefiable soils
HU Jilei1,2, ZHANG Zhen2, YANY Bing2
1. Key Laboratory of Geological Hazards on Three Gorges Reservoir Area(China Three Gorges University), Ministry of Education, Yichang 443002, Hubei, China;
2. College of Civil Engineering and Architecture, China Three Gorges University, Yichang 443002, Hubei, China
下载:  PDF (7714KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 为研究双向地震作用下,液化场地中不同临空高度、地震强度、地铁车站埋深和车站至临空边的水平距离对地铁车站的影响,采用有限元-有限差分耦合数值方法,分析临空液化场地中车站结构的地震响应特征及规律。结果表明:临空场地的存在会引起地铁车站产生水平位移并发生转动,超孔隙水压力的累积和消散会使地铁车站先上浮再沉降;车站结构的水平位移、层间位移角和孔压消散后的沉降量随地震强度、临空高度的增加而增大,但随着车站与临空侧水平距离和地下结构埋深的增大而降低;临空场地会降低地铁车站在地震结束时刻的上浮量,降低程度随临空高度的增加而增加,但随着车站与临空侧水平距离的增加而减小;地下结构邻近临空侧的墙体内力小于非临空侧墙体,且内力差随临空高度的增加而增大;增大地铁车站的埋深、与临空侧的水平距离可以有效降低临空场地对地下结构产生的不利影响。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
胡记磊
张缜
杨兵
关键词:  双向地震  临空场地  地铁车站  砂土液化  侧移  上浮    
Abstract: To study the effects of different heights of the free face, seismic intensity, subway station burial depth, and horizontal distance from the station to the free face on the subway station in liquefied soil under bidirectional earthquake action, the finite element-finite difference coupled numerical method was used to analyze the seismic response characteristics and laws of the station structure near the free face in liquefiable soils. The results showed that: the existence of the free facewould cause the horizontal displacement and rotation of the subway station, and the accumulation and dissipation of the excess pore water pressure would make the subway station float up first and then settle down; the horizontal displacement, inter-story displacement angle, and settlement after pore pressure dissipation of the structure gradually increased with the increase of seismic intensity and free face height but decreased with the increase of horizontal distance between the station and the free face and the buried depth of the structure; the existence of the free face would reduce the floating of the subway station at the end of the earthquake, and the degree of reduction increased with the increase of the free face height but decreased with the increase of the horizontal distance between the station and the free face;the internal force of the wall near the free face of the structure was smaller than that of the non-free side wall, and the internal force difference increased with the increase of the free face height; increasing the buried depth of the subway station and the horizontal distance from the free face could effectively reduce the adverse effects of the free face on the structure.
Key words:  bidirectional earthquake    free face field    subway station    sand liquefaction    lateral displacement    uplift
收稿日期:  2023-08-04      发布日期:  2023-09-20     
中图分类号:  TU43  
基金资助: 湖北省教育厅科学技术研究计划重点资助项目(D20211204)
作者简介:  胡记磊(1986— ),男,湖北应城人,博士,副教授,博士生导师,主要研究方向为工程的地震破坏机理分析及防御等. E-mail:hujl@ctgu.edu.cn
引用本文:    
胡记磊, 张缜, 杨兵. 临空液化场地中地铁车站侧移及上浮规律[J]. 隧道与地下工程灾害防治, 2023, 5(3): 52-62.
HU Jilei, ZHANG Zhen, YANY Bing. Lateral displacement and uplift of the subway station near the free face in liquefiable soils. Hazard Control in Tunnelling and Underground Engineering, 2023, 5(3): 52-62.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2023/V5/I3/52
[1] 安军海, 闫宏锦, 赵志杰, 等. 地铁车站结构上穿可液化土层地震响应分析[J]. 科学技术与工程, 2022, 22(17):7080-7088. AN Junhai, YAN Hongjin, ZHAO Zhijie, et al. Seismic response analysis of liquefiable soil layer on subway station structure[J]. Science Technology and Engineering, 2022, 22(17):7080-7088.
[2] 李洋, 许成顺, 杜修力. 阪神地震中大开地铁车站和区间隧道破坏差异成因研究[J]. 防灾减灾工程学报, 2020, 40(3):326-336. LI Yang, XU Chengshun, DU Xiuli. Causal analyses of different degree of earthquake damage occurred on Daikai Subway Station and its running tunnels during Kobe Earthquake[J]. Journal of Disaster Prevention and Mitigation Engineering, 2020, 40(3):326-336.
[3] 禹海涛, 王祺, 刘涛. 均质地层长隧道纵向地震响应解析解[J]. 隧道与地下工程灾害防治, 2020, 2(1):34-41. YU Haitao, WANG Qi, LIU Tao. Analytical solution of longitudinal seismic response of long tunnels in homogeneous stratum[J]. Hazard Control in Tunnelling and Underground Engineering, 2020, 2(1):34-41.
[4] 赵密, 李旭东, 高志懂,等. 地震作用下土-深埋地下结构相互作用的高效时程分析方法[J]. 防灾减灾工程学报, 2021, 41(1):39-45. ZHAO Mi, LI Xudong, GAO Zhiqiao, et al. Efficient analysis for seismic soil-structure interaction with deep burial depth[J]. Journal of Disaster Prevention and Mitigation Engineering, 2021, 41(1):39-45.
[5] 于仲洋, 张鸿儒, 邱滟佳,等. 地震作用下相邻地下结构与土相互作用特性研究[J]. 地震工程学报, 2020, 42(2):481-489. YU Zhongyang, ZHANG Hongru, QIU Yanjia, et al. Neighboring underground structure-soil interaction characteristics under seismic action[J]. China Earthquake Engineering Journal, 2020, 42(2):481-489.
[6] 蒋清国. 液化地层下地铁工程抗地震液化措施研究[J]. 震灾防御技术, 2015, 10(1):95-107. JIANG Qingguo. Anti-liquefaction measures for subway engineering in liquefiable soil layers[J]. Technology for Earthquake Disaster Prevention, 2015, 10(1):95-107.
[7] 王胜平, 阎高翔. 南京地铁一号线许府巷-南京站盾构区间地震液化分析[J]. 现代隧道技术, 2001, 38(2):19-23. WANG Shengping, YAN Gaoxiang. Analysis on earthquake-caused ground liquefying in shield-driven tunnel section from Xufuxiang Station to Nanjing Station, Nanjing metro[J]. Modern Tunnelling Technology, 2001, 38(2):19-23.
[8] 刘春晓. 可液化土层分布对土-地铁地下结构地震响应影响的振动台试验研究[J]. 中国铁道科学, 2021, 42(5):30-40. LIU Chunxiao. Shaking table test on influence of liquefiable soil distribution on seismic response of soil and subway underground structures[J]. China Railway Science, 2021, 42(5):30-40.
[9] YASUDA S, NAGASE H, KIKU H, et al. The mechanism and a simplified procedure for the analysis of permanent ground displacement due to liquefaction[J]. Soils and Foundations, 1992, 32(1):149-160.
[10] 胡记磊, 唐小微, 白旭, 等. 含倾斜砂土夹层的人工岛地震液化灾害分析[J]. 大连理工大学学报, 2015, 55(5):504-510. HU Jilei, TANG Xiaowei, BAI Xu, et al. Analyses of seismic liquefaction induced disaster in artificial island with sloping sand layer[J]. Journal of Dalian University of Technology, 2015, 55(5):504-510.
[11] ZHUANG Haiyang, WANG Xu, MIAO Yu, et al. Seismic responses of a subway station and tunnel in a slightly inclined liquefiable ground through shaking table test[J]. Soil Dynamics and Earthquake Engineering, 2019, 116:371-385.
[12] 庄海洋, 付继赛, 陈苏, 等. 微倾斜场地中地铁地下结构周围地基液化与变形特性振动台模型试验研究[J]. 岩土力学, 2019, 40(4):1263-1272. ZHUANG Haiyang, FU Jisai, CHEN Su, et al. Liquefaction and deformation of the soil foundation around a subway underground structure with a slight inclined ground surface by the shaking table test[J]. Rock and Soil Mechanics, 2019, 40(4):1263-1272.
[13] LITTLE M, RATHJE E. Key trends regarding the effects of site geometry on lateral spreading displacements[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2021, 147(12):04021142-04021154.
[14] OKA F, YASHIMA A, SHIBATA T, et al. FEM-FDM coupled liquefaction analysis of a porous soil using an elasto-plastic model[J]. Applied Scientific Research, 1994, 52(3):209-245.
[15] AKAI K, TAMURA T. Numerical analysis of multi-dimensional consolidation accompanied with elastic-plastic constitutive equation[J]. Proceedings of the Japan Society of Civil Engineers, 1978(269):95-104.
[16] NEWMARK N M. A method of computation for structural dynamics[J]. Journal of the Engineering Mechanics Division, 1959, 85(3):67-94.
[17] LU Chih-wei, GUI Meen-wah, LAI Shing-Cheng. A numerical study on soil-group-pile-bridge-pier interaction under the effect of earthquake loading[J]. Journal of Earthquake and Tsunami, 2014, 8(1):1350037-1-1350037-35.
[18] HU Jilei, CHEN Qihua, LIU Huabei. Relationship between earthquake-induced uplift of rectangular underground structures and the excess pore water pressure ratio in saturated sandy soils[J]. Tunnelling and Underground Space Technology, 2018, 79:35-51.
[19] HU Jilei, LIU Huabei. The uplift behavior of a subway station during different degrees of soil liquefaction[J]. Procedia Engineering, 2017, 189:18-24.
[20] 邵琪.饱和砂土地震液化的网格自适应数值方法研究[D].大连:大连理工大学,2014. SHAO Qi. Study on adaptive remeshing numerical methods in seismic liquefaction of saturated sand[D]. Dalian:Dalian University of Technology, 2014.
[21] 白旭, 唐小微, 胡记磊. 浅埋地铁车站的抗液化上浮改进措施数值分析[J]. 防灾减灾工程学报, 2019, 39(5):778-786. BAI Xu, TANG Xiaowei, HU Jilei. Numerical analysis of anti-liquefaction uplift of a shallow buried subway station in improved countermeasures[J]. Journal of Disaster Prevention and Mitigation Engineering, 2019, 39(5):778-786.
[1] 李兆平, 史磊磊. 北京地区暗挖地铁车站结构设计方法研究进展综述[J]. 隧道与地下工程灾害防治, 2019, 1(3): 14-21.
[1] DENG Mingjiang, LIU Bin. Challenges, countermeasures and development direction of geological forward-prospecting for TBM cluster tunneling in super-long tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 8 -19 .
[2] DING Xiuli, ZHANG Yuting, ZHANG Chuanjian, YAN Tianyou, HUANG Shuling. Review on countermeasures and their adaptability evaluation to tunnels crossing active faults[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 20 -35 .
[3] JIAO Yuyong, ZHANG Weishe, OU Guangzhao, ZOU Junpeng, CHEN Guanghui. Review of the evolution and mitigation of the water-inrush disaster in drilling-and-blasting excavated deep-buried tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 36 -46 .
[4] ZHANG Qingsong, ZHANG Lianzhen, LI Peng, FENG Xiao. New progress in grouting reinforcement theory of water-rich soft stratum in underground engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 47 -57 .
[5] XIA Kaiwen, XU Ying, CHEN Rong. Dynamic tests of rocks subjected to simulated deep underground environments[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 58 -75 .
[6] HONG Kairong. Study on rock breaking and wear of TBM hob in high-strength high-abrasion stratum[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 76 -85 .
[7] TAN Zhongsheng. Application experimental study of high-strength lattice girders with heat treatment in tunnel engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 86 -92 .
[8] CHEN Jianxun, LUO Yanbin. The stability of structure and its control technology for lager-span loess tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 93 -101 .
[9] JING Hongwen, YU Liyuan, SU Haijian, GU Jincai, YIN Qian. Development and application of catastrophic experiment system for water inrush in surrounding rock of deep tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 102 -110 .
[10] LI Tianbin, WU Chendi, MENG Lubo, GAO Meiben. Study on dynamic analysis and comprehensive warning method of tunnel collapse[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 111 -118 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn