Please wait a minute...
 
隧道与地下工程灾害防治  2023, Vol. 5 Issue (3): 41-51    DOI: 10.19952/j.cnki.2096-5052.2023.03.05
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
盾构隧道施工历史对隧道地震响应的影响
加瑞1,2,杨岗1,2,郑刚1,2
1. 天津大学建筑工程学院, 天津 300350;2. 天津大学滨海土木工程结构与安全教育部重点实验室, 天津 300350
Influence of shield tunnel construction history on seismic response of tunnel
JIA Rui1,2, YANG Gang1,2, ZHENG Gang1,2
1. School of Civil Engineering, Tianjin University, Tianjin 300350, China;
2. Key Laboratory of Coast Civil Structure Safety of Ministry of Education, Tianjin University, Tianjin 300350, China
下载:  PDF (5243KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了研究盾构隧道施工引起的隧道周围土体应力状态及力学特性改变对隧道地震响应的影响,通过数值模拟分析盾构隧道施工引起的应力释放和土体扰动对地震时周围土体变形、孔隙水压力、管片弯矩和轴力的影响。数值模拟结果表明:应力释放程度越大,隧道周围土体的初始剪应力越大,地震时隧道周围土体的变形越大,超静孔隙水压力越大,管片的峰值弯矩和轴力也越大;土体扰动程度越大,土体的剪切模量越小,土体相对越软,阻尼比越大,地震时隧道周围土体的变形越大,超静孔隙水压力越大,管片的峰值弯矩和轴力越小;土体扰动范围越大,隧道周围土体的变形越大,超静孔隙水压力越大,管片的峰值弯矩和轴力越小。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
加瑞
杨岗
郑刚
关键词:  盾构隧道  地震响应  应力释放  土体扰动    
Abstract: In order to study the influence of changes of stress states and mechanical properties of soils around the tunnel caused by shield tunnel construction on the seismic response of tunnel, the effects of stress release and soil disturbance induced by shield tunnel construction on the deformation of surrounding soil, pore pressure, segment bending moment and axial force during earthquake were analyzed by numerical simulation. The numerical simulation results showed that the greater the stress release degree was, the greater the initial shear stress of soil around the tunnel, the greater the deformation of soil around the tunnel during the earthquake was, the greater the excess pore water pressure was, and the greater the peak bending moment and axial force of the segment was; The greater the degree of soil disturbance was, the smaller the shear modulus of soil was, the softer the soil was, the greater the damping ratio was, the larger the deformation of soil around the tunnel during the earthquake was, the larger the excess pore water pressure was, and the smaller the peak bending moment and axial force of the segment was; The larger the range of soil disturbance was, the larger the deformation of soil around the tunnel was, the larger the excess pore water pressure was, and the smaller the peak bending moment and axial force of segment.
Key words:  shield tunnel    seismic response    stress release    soil disturbance
收稿日期:  2023-04-19      发布日期:  2023-09-20     
中图分类号:  TU435  
基金资助: 国家自然科学基金重大资助项目(51890911);天津市科技计划资助项目(21JCYBJC00380)
作者简介:  加瑞(1982— ),男,山西运城人,博士,副教授,硕士生导师,主要研究方向为岩土工程和地下工程. E-mail:jiarui@tju.edu.cn
引用本文:    
加瑞, 杨岗, 郑刚. 盾构隧道施工历史对隧道地震响应的影响[J]. 隧道与地下工程灾害防治, 2023, 5(3): 41-51.
JIA Rui, YANG Gang, ZHENG Gang. Influence of shield tunnel construction history on seismic response of tunnel. Hazard Control in Tunnelling and Underground Engineering, 2023, 5(3): 41-51.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2023/V5/I3/41
[1] 高波, 王峥峥, 袁松, 等. 汶川地震公路隧道震害启示[J]. 西南交通大学学报, 2009, 44(3):336-341. GAO Bo, WANG Zhengzheng, YUAN Song, et al. Lessons learnt from damage of highway tunnels in Wenchuan Earthquake[J]. Journal of Southwest Jiaotong University, 2009, 44(3):336-341.
[2] 杜修力, 李洋, 许成顺, 等. 1995年日本阪神地震大开地铁车站震害原因及成灾机理分析研究进展[J]. 岩土工程学报, 2018, 40(2):223-236. DU Xiuli, LI Yang, XU Chengshun, et al. Review on damage causes and disaster mechanism of Daikai Subway Station during 1995 Osaka-Kobe Earthquake[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(2):223-236.
[3] 王文礼, 苏灼谨, 林峻弘, 等. 台湾集集大地震山岳隧道受损情形之探讨[J]. 现代隧道技术, 2001, 38(2):52-60. WANG Wenli, SU Zhuojin, LIN Junhong, et al. Discussion on damaged extent of mountainous tunnels due to earthquake, Taiwan[J]. Modern Tunnelling Technology, 2001, 38(2):52-60.
[4] 庄卫林, 陈乐生. 汶川地震公路震害分析: 桥梁与隧道[M]. 北京:人民交通出版社, 2013:109-271.
[5] SUN Qiangqiang, DIAS Dias, SOUSA E Luís Ribeiro. Soft soil layer-tunnel interaction under seismic loading[J]. Tunnelling and Underground Space Technology, 2020, 98:103329.
[6] 龚国栋, 梁建文, 巴振宁, 等. 复杂软土盾构隧道横断面抗震时程分析[J]. 天津大学学报(自然科学与工程技术版), 2019, 52(增刊1):106-112. GONG Guodong, LIANG Jianwen, BA Zhenning, et al. Seismic transverse time-history analysis of shield tunnel in complex soft soil[J]. Journal of Tianjin University(Science and Technology), 2019, 52(Suppl. 1):106-112.
[7] 张景, 何川, 耿萍, 等. 穿越软硬突变地层盾构隧道纵向地震响应振动台试验研究[J]. 岩石力学与工程学报, 2017, 36(1):68-77. ZHANG Jing, HE Chuan, GENG Ping, et al. Shaking table tests on longitudinal seismic response of shield tunnel through soft-hard stratum junction[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(1):68-77.
[8] HUANG Jingqi, ZHAO Xu, ZHAO Mi, et al. Effect of peak ground parameters on the nonlinear seismic response of long lined tunnels[J]. Tunnelling and Underground Space Technology, 2020, 95:103175.
[9] GOMES R C. Effect of stress disturbance induced by construction on the seismic response of shallow bored tunnels[J]. Computers and Geotechnics, 2013, 49:338-351.
[10] SUN Qiangqiang, DIAS Dias. Seismic behavior of circular tunnels: influence of the initial stress state[J]. Soil Dynamics and Earthquake Engineering, 2019, 126:105808.
[11] 王刚, 孙博. 复杂地质条件下盾构隧道地震响应分析[J]. 山东农业大学学报(自然科学版), 2014, 45(1):69-76. WANG Gang, SUN Bo. Study on seismic response of shield tunnel under complex geological conditions[J]. Journal of Shandong Agricultural University(Natural Science Edition), 2014, 45(1):69-76.
[12] 郭知一, 周海祚, 郑刚, 等. 隧道与联络通道连接处地震响应分析[J]. 地震工程学报, 2021, 43(6):1480-1486. GUO Zhiyi, ZHOU Haizuo, ZHENG Gang, et al. Seismic response analysis of the joint between tunnel and cross passage[J]. China Earthquake Engineering Journal, 2021, 43(6):1480-1486.
[13] LAWRENCE KRAMER S. Geotechnical earthquake engineering[M]. New Jersey, US:Prentice Hall, 1996.
[14] 郑刚, 戴轩. 灾害环境下隧道不同部位漏水对于周围土体及平行隧道的影响研究[J]. 岩石力学与工程学报, 2015, 34(增刊1):3196-3207. ZHENG Gang, DAI Xuan. Influence of different leakage positions of tunnel on surrounding soils and parallel tunnel under disaster environment[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(Suppl.1):3196-3207.[15] POTTS D M, ZDRAVKOVIC L. Finite element analysis in geotechnical engineering[M]. London, UK: Thomas Telford, 2001.
[16] 王继鑫, 荣棉水, 孟凡超. 结构性软土动剪切模量试验研究[J]. 建筑结构, 2018, 48(增刊2):935-939. WANG Jixin, RONG Mianshui, MENG Fanchao. Experimental study on dynamic shear modulus of structural soft soils[J]. Building Structure, 2018, 48(Suppl.2):935-939.
[17] 仝玉丁, 杨贵, 刘汉龙. 原状和重塑海洋粉土动力特性对比试验研究[J]. 地震工程学报, 2014, 36(4):952-957. TONG Yuding, YANG Gui, LIU Hanlong. Comparative test study on dynamic characteristics of undisturbed and remolded marine silt[J]. China Earthquake Engineering Journal, 2014, 36(4):952-957.
[18] YANG Z X, PAN K. Flow deformation and cyclic resistance of saturated loose sand considering initial static shear effect[J]. Soil Dynamics and Earthquake Engineering, 2017, 92:68-78.
[19] PAN K, YANG Z X. Effects of initial static shear on cyclic resistance and pore pressure generation of saturated sand[J]. Acta Geotechnica, 2018, 13(2):473-487.
[20] 梁建文, 朱俊. 饱和软土场地中地下结构非线性地震响应分析的一个FEM-IBEM耦合方法[J]. 岩土工程学报, 2018, 40(11):1977-1987. LIANG Jianwen, ZHU Jun. FEM-IBEM coupling method for nonlinear seismic response analysis of underground structures in water-saturated soft soils[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(11):1977-1987.
[1] 王伟, 刘英, 庄海洋, 赵凯, 陈国兴. 考虑内部结构的大直径盾构隧道抗震性能[J]. 隧道与地下工程灾害防治, 2023, 5(3): 78-85.
[2] 林颖, 王国波, 施龙飞, 王建宁. 近距离空间曲线隧道群地震响应[J]. 隧道与地下工程灾害防治, 2023, 5(3): 86-92.
[3] 禹海涛, 朱晨阳. 基于BP神经网络的圆形隧道地震响应预测方法及参数分析[J]. 隧道与地下工程灾害防治, 2023, 5(3): 19-26.
[4] 宗军良, 饶倩, 王祺, 禹海涛. 地面出入式盾构隧道动力响应的数值模拟[J]. 隧道与地下工程灾害防治, 2023, 5(3): 63-70.
[5] 魏纲, 徐天宝, 张治国. 复杂应力路径下波纹钢加固盾构隧道数值分析[J]. 隧道与地下工程灾害防治, 2023, 5(2): 24-32.
[6] 王智, 刘祥勇, 朱先发, 洪小星, 沈一鸣, 张冰利. 小曲率半径隧道施工对盾构管片结构影响[J]. 隧道与地下工程灾害防治, 2023, 5(1): 45-54.
[7] 韩兴博, 陈子明, 苏恩杰, 梁晓明, 宋桂峰, 叶飞. 盾构隧道围岩压力分布规律及作用模式[J]. 隧道与地下工程灾害防治, 2022, 4(4): 34-43.
[8] 喻伟, 林赞权, 朱彬彬, 汪元冶, 丁文其, 乔亚飞, 张晓东, 龚琛杰. 盾构隧道防水密封垫材料的高温老化后性能[J]. 隧道与地下工程灾害防治, 2022, 4(4): 52-58.
[9] 赵辰洋, 罗毛毛, 邱静怡, 倪芃芃, 赵锋烽. 盾构隧道施工引起地层变形预测方法综述[J]. 隧道与地下工程灾害防治, 2022, 4(3): 31-46.
[10] 潘秋景, 李晓宙, 黄杉, 汪来, 王树英, 方国光. 机器学习在盾构隧道智能施工中的应用——综述与展望[J]. 隧道与地下工程灾害防治, 2022, 4(3): 10-30.
[11] 张治国, 程志翔, 陈杰, 吴钟腾, 李云正. 盾构隧道接缝渗漏水诱发既有管线变形模型试验[J]. 隧道与地下工程灾害防治, 2022, 4(3): 77-91.
[12] 刘祥勇, 张鑫, 王军, 赵涛宁, 朱先发. 盾构施工对邻近建筑物群结构影响评价[J]. 隧道与地下工程灾害防治, 2022, 4(3): 99-106.
[13] 丁智, 李鑫家, 张霄. 基于机器学习的盾构掘进地表变形预测研究与展望[J]. 隧道与地下工程灾害防治, 2022, 4(3): 1-9.
[14] 吕玺琳, 赵庾成, 曾盛. 砂层中盾构隧道开挖面稳定性物理模型试验[J]. 隧道与地下工程灾害防治, 2022, 4(3): 67-76.
[15] 许有俊, 王智广, 张旭, 郭飞, 高胜雷, 杨昆. 小转弯半径盾构隧道施工引起的地层变形特征[J]. 隧道与地下工程灾害防治, 2022, 4(2): 11-18.
[1] DENG Mingjiang, LIU Bin. Challenges, countermeasures and development direction of geological forward-prospecting for TBM cluster tunneling in super-long tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 8 -19 .
[2] DING Xiuli, ZHANG Yuting, ZHANG Chuanjian, YAN Tianyou, HUANG Shuling. Review on countermeasures and their adaptability evaluation to tunnels crossing active faults[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 20 -35 .
[3] JIAO Yuyong, ZHANG Weishe, OU Guangzhao, ZOU Junpeng, CHEN Guanghui. Review of the evolution and mitigation of the water-inrush disaster in drilling-and-blasting excavated deep-buried tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 36 -46 .
[4] ZHANG Qingsong, ZHANG Lianzhen, LI Peng, FENG Xiao. New progress in grouting reinforcement theory of water-rich soft stratum in underground engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 47 -57 .
[5] XIA Kaiwen, XU Ying, CHEN Rong. Dynamic tests of rocks subjected to simulated deep underground environments[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 58 -75 .
[6] HONG Kairong. Study on rock breaking and wear of TBM hob in high-strength high-abrasion stratum[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 76 -85 .
[7] TAN Zhongsheng. Application experimental study of high-strength lattice girders with heat treatment in tunnel engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 86 -92 .
[8] CHEN Jianxun, LUO Yanbin. The stability of structure and its control technology for lager-span loess tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 93 -101 .
[9] JING Hongwen, YU Liyuan, SU Haijian, GU Jincai, YIN Qian. Development and application of catastrophic experiment system for water inrush in surrounding rock of deep tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 102 -110 .
[10] LI Tianbin, WU Chendi, MENG Lubo, GAO Meiben. Study on dynamic analysis and comprehensive warning method of tunnel collapse[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 111 -118 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn