Please wait a minute...
 
隧道与地下工程灾害防治
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
基于皮带出渣图像识别渣土含水率区间
苏国君1,龚秋明1*,周小雄2,吴伟锋3,陈培新3
(1. 北京工业大学城市防灾与减灾教育部重点实验室,北京 100024;2. 重庆交通大学土木工程学院,重庆 400074;3 上海隧道工程有限公司,上海 200032)
Identifying the water content interval of muck based on the image of belt slag
SU Guojun1,GONG Qiuming1*,ZHOU Xiaoxiong2,WU Weifeng3,CHEN Peixin3
(1. Key Laboratory of Urban Security and Disaster Engineering of China Ministry of Education, Beijing University of Technology, Beijing 100024, China;2. School of Civil Engineering, Chongqing Jiaotong University, Chongqing 400074, China;3. Shanghai Tunnel Engineering Co., Ltd., Shanghai 200032, China)
下载:  PDF (2179KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 为实时识别渣土含水率,通过制备3种初始含水率细砂,添加不同泡沫注入比的泡沫制成不同含水率的改良渣土,通过皮带出渣试验平台开展出渣试验,获取皮带上渣土图像,并相应采集渣土样测定其含水率,以1%为间隔标记含水率区间,建立渣土图像与含水率区间数据集。通过图像预处理,采用简化局部像素强度模式结合完备局部二值模式的方法提取渣土主体图像与边缘图像纹理特征,选取粒子群优化的支持向量机模型作为基模型,进一步构建渣土含水率识别集成学习模型,提高了识别准确率,含水率识别误差为±1%。其结果可为盾构施工中采用图像识别方法实时识别渣土特征提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
苏国君
龚秋明
周小雄
吴伟锋
陈培新
关键词:  皮带出渣试验  渣土图像  含水率识别  机器学习  图像纹理    
Abstract: In order to identify the soil moisture content in real time, the improved muck with three kinds of fine sand with initial water content were prepared by adding foam with different foam injection ratios, and the slag experiment was carried out through the belt slag test platform, and the muck images on the belt were obtained, and the muck samples were collected accordingly to determine the water content, and the water content interval was marked at 1% intervals, and the data set of muck images and water content intervals was established. Through image preprocessing, the texture features of the main image and the edge image of the muck were extracted by using the method of simplified local intensity order pattern combined with completed local binary pattern, and the support vector machine model of particle swarm optimization was selected as the base model, and the integrated learning model for the recognition of water content of the muck was further constructed, which improved the recognition accuracy, and the recognition error of the water content was ±1%. The results could provide a reference for the real-time identification of muck features by image recognition method in shield construction.
Key words:  belt slag experiment    muck image    water content identification    machine learning    image texture
收稿日期:  2024-04-11      修回日期:  2024-05-23      发布日期:  2024-05-28     
中图分类号:  TU94  
  U455.4  
通讯作者:  龚秋明(1969—),男,湖南安化人,教授,博士生导师,博士,主要研究方向为掘进机、盾构机隧道施工。    E-mail:  gongqiuming@bjut.edu.cn
作者简介:  苏国君(1999—),男,辽宁沈阳人,硕士研究生,主要研究方向为盾构机隧道施工智能化。E-mail:13940387321@163.com
引用本文:    
苏国君, 龚秋明, 周小雄, 吴伟锋, 陈培新. 基于皮带出渣图像识别渣土含水率区间[J]. 隧道与地下工程灾害防治, .
SU Guojun, GONG Qiuming, ZHOU Xiaoxiong, WU Weifeng, CHEN Peixin. Identifying the water content interval of muck based on the image of belt slag. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1-12.
链接本文:  
[1] 禹海涛, 朱晨阳. 基于BP神经网络的圆形隧道地震响应预测方法及参数分析[J]. 隧道与地下工程灾害防治, 2023, 5(3): 19-26.
[2] 丁智, 李鑫家, 张霄. 基于机器学习的盾构掘进地表变形预测研究与展望[J]. 隧道与地下工程灾害防治, 2022, 4(3): 1-9.
[3] 潘秋景, 李晓宙, 黄杉, 汪来, 王树英, 方国光. 机器学习在盾构隧道智能施工中的应用——综述与展望[J]. 隧道与地下工程灾害防治, 2022, 4(3): 10-30.
[1] QIAN Qihu. Scientific use of the urban underground space to construction the harmonious livable and beautiful city[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 1 -7 .
[2] ZHOU Caigui, LI Jing, LIANG Qingguo, CHEN Kelin. Comparison of water inflow prediction methods of hydraulic diversion tunnels during construction[J]. Hazard Control in Tunnelling and Underground Engineering, 2023, 5(1): 32 -44 .
[3] HUANG Zheng, YE Zhangqian, ZHANG Jiawei, PENG Zimao, YAN Zhanshuo. The influence of intumescent fire retardant coating on the fire resistance of assembled frame tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -16 .
[4] ZHANG Ning, HUANG Xinjie, WANG Chuan, XU Bin, ZHANG Jiancheng, ZHANG Bo. Experimental and numerical simulation of high-pressure water jet cutting concrete[J]. Hazard Control in Tunnelling and Underground Engineering, 2023, 5(4): 47 -56 .
[5] . [J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(2): 124 -127 .
[6] JIA Rui, YANG Gang, ZHENG Gang. Influence of shield tunnel construction history on seismic response of tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2023, 5(3): 41 -51 .
[7] WANG Qiuzhe, HAN Rui, BAI Xiaoxiao, ZHAO Kai. Seismic stability of immersed tunnel under locked backfill[J]. Hazard Control in Tunnelling and Underground Engineering, 2023, 5(3): 71 -77 .
[8] . [J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(2): 128 -130 .
[9] HAO Junsuo, LIU Junfeng, LIU Hao, ZHAO Mingfan. Inducement and prevention technology of secondary disasters of water and mud inrush in tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2023, 5(4): 81 -92 .
[10] DONG Longjun, WANG Junhui, MA Ju. Response and support suggestions of surrounding rock of underground cavern under different microseismic source mechanism[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(3): 68 -76 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn