Please wait a minute...
 
隧道与地下工程灾害防治  2024, Vol. 6 Issue (3): 1-11    DOI: 10.19952/j.cnki.2096-5052.2024.03.01
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
软弱夹层基坑圆弧-平面整体破坏模式分析与治理
李连祥1,2,3,吕桂青4,张尚儒1,2,赵永新1,2,汪楚涵1,2
1. 山东大学土建与水利学院, 山东 济南 250061;2. 山东大学基坑与深基础工程技术研究中心, 山东 济南 250061;3. 山东高新岩土工程有限公司, 山东 济南 250102;4. 济南市城乡建设发展服务中心, 山东 济南 250014
Case study on the overall stability of foundation pit slope with weak interlayer
LI Lianxiang1,2,3, LÜ Guiqing4, ZHANG Shangru1,2, ZHAO Yongxin1,2, WANG Chuhan1,2
1. School of Civil Engineering, Shandong University, Jinan 250061, Shandong, China;
2. Foundation Pit and Deep Foundation Engineering Research Center, Shandong University, Jinan 250061, Shandong, China;
3. Shandong High-Xin Geotechnical Engineering Co., Ltd., Jinan 250102, Shandong, China;
4. Jinan City Urban and Rural Construction Development Service Center, Jinan 250014, Shandong, China
下载:  PDF (3717KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 济南市区北部黄河两岸地区地表以下6~8 m存在一层淤泥质土,相近深度基坑出现大量滑坡,表现出与现有基坑圆弧滑动法不同的整体破坏模式。基于大量工程滑坡性状,针对具体案例判断:含软弱夹层基坑边坡为圆弧-平面整体破坏模式,结果得到Plaxis有限元软件数值分析验证,基于整体的静力和力矩平衡方程推导出含软弱夹层基坑边坡圆弧-平面整体稳定性分析解析解,提出最优支护方案并经过数值和监测数据验证。结果表明:济南市区北部黄河冲积平原地貌单元地层基坑边坡受软弱夹层影响,边坡整体破坏模式呈圆弧-平面滑动模式,基坑设计如果采用圆弧滑动计算会存在安全隐患,基坑支护结构选型须设置抗剪构件贯穿软弱夹层,将圆弧-平面破坏模式改变为圆弧滑动模式,从而确保基坑安全。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李连祥
吕桂青
张尚儒
赵永新
汪楚涵
关键词:  软弱夹层  基坑边坡  整体稳定性  圆弧-平面破坏模式    
Abstract: In the northern area of Jinan City, along the banks of the Yellow River, there was a layer of silty soil approximately 6 to 8 meters below the surface. A large number of landslides were observed in nearby excavations at this depth, demonstrating a different overall failure mode from the conventional circular sliding method for excavations. Based on extensive engineering landslide characteristics, a specific case analysis indicated that the slopes of excavations containing weak interlayers were subjected to a combined circular-plane overall failure mode. This conclusion was validated through numerical analysis using Plaxis finite element software. An analytical solution for the overall stability analysis of excavation slopes with weak interlayers was derived based on statics and moment equilibrium equations. The optimal support scheme was proposed and validated through numerical and monitoring data. The findings suggested that excavation slopes in geological units of the Yellow River alluvial plain in northern Jinan City were influenced by weak interlayers, exhibiting an overall failure mode of circular-plane sliding. The conventional circular sliding calculation method for excavation design posed safety risks. Therefore, the selection of excavation support structures should incorporate shear-resistant elements penetrating the weak interlayers to transform the circular-plane failure mode into circular sliding mode, thus ensuring excavation safety.
Key words:  weak interlayer    foundation pit slope    overall stability    circular plane failure modeReceived: 2024-02-24    Revised: 2024-06-12    Accepted: 2024-06-17    Published: 2024-09-20
发布日期:  2024-09-20     
中图分类号:  TU443  
基金资助: 国家自然科学基金资助项目(51508310);山东省优秀中青年科学家科研基金资助项目(BS2013SF024);济南市科技计划资助项目(201201145)
作者简介:  李连祥(1966— ),男,河北唐山人,教授,博士生导师,博士,主要研究方向为结构与岩土工程. E-mail: jk_doctor@163.com
引用本文:    
李连祥,吕桂青,张尚儒,赵永新,汪楚涵. 软弱夹层基坑圆弧-平面整体破坏模式分析与治理[J]. 隧道与地下工程灾害防治, 2024, 6(3): 1-11.
LI Lianxiang, LÜ Guiqing, ZHANG Shangru, ZHAO Yongxin, WANG Chuhan. Case study on the overall stability of foundation pit slope with weak interlayer. Hazard Control in Tunnelling and Underground Engineering, 2024, 6(3): 1-11.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2024/V6/I3/1
[1] 山东大学, 济南市勘察测绘研究院. 济南市区岩土工程勘察地层层序划分标准: DB37/T 5131—2019[S]. 济南:山东大学出版社,2019.
[2] 中国建筑科学研究院. 建筑基坑支护技术规程: JGJ 120—2012[S]. 北京: 中国建筑工业出版社, 2012.
[3] 胡卸文. 无泥型软弱层带变形参数取值研究[J]. 岩土工程学报, 2000, 22(1): 109-112. HU Xiewen. Study on evaluation of deformation modulus of no-clay weak interbed[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(1): 109-112.
[4] 张晓平, 吴顺川, 张志增, 等. 含软弱夹层土样变形破坏过程细观数值模拟及分析[J]. 岩土力学, 2008, 29(5): 1200-1204. ZHANG Xiaoping, WU Shunchuan, ZHANG Zhizeng, et al. Numerical simulation and analysis of failure process of soil with weak intercalated layer[J]. Rock and Soil Mechanics, 2008, 29(5): 1200-1204.
[5] 袁伟, 黄茂松, 刘怡林, 等. 含软弱夹层土坡稳定性的三维弹塑性数值模拟[J]. 郑州大学学报(工学版), 2012, 33(5): 1-4. YUAN Wei, HUANG Maosong, LIU Yilin, et al. Three-dimensional stability analysis of slopes with weak interlayer based on elastoplastic numerical method[J]. Journal of Zhengzhou University(Engineering Science), 2012, 33(5): 1-4.
[6] 王浩然,黄茂松,刘怡林. 含软弱夹层边坡的三维稳定性极限分析[J].岩土力学,2013,34(增刊2):156-160. WANG Haoran, HUANG Maosong, LIU Yilin. Three-dimensional stability analysis of slope with weak interlayer[J].Geotechnical mechanics, 2013, 34(Suppl.2):156-160.
[7] HUANG M S, WANG H R, SHENG D C, et al. Rotational-translational mechanism for the upper bound stability analysis of slopes with weak interlayer[J]. Computers and Geotechnics, 2013, 53: 133-141.
[8] 王睿, 张嘎, 张建民. 降雨条件下含软弱夹层土坡的离心模型试验研究[J]. 岩土工程学报, 2010, 32(10): 1582-1587. WANG Rui, ZHANG Ga, ZHANG Jianmin. Centrifuge modeling of rainfall-induced deformation of slopes with weak layers[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(10): 1582-1587.
[9] 汤祖平,李亮,赵炼恒,等.含软弱夹层边坡稳定性的极限分析上限解析[J].铁道科学与工程学报,2014,11(2):60-64. TANG Zuping, LI Liang, ZHAO Lianheng, et al. Upper limit analysis of slope stability with weak interlayer[J]. Journal of Railway Science and Engineering, 2014, 11(2): 60-64.
[10] 皮晓清,李亮,唐高朋,等. 基于有限元极限上限法的含软弱夹层边坡稳定性分析[J].铁道科学与工程学报,2019,16(2):351-358. PI Xiaoqing, LI Liang, TANG Gaopeng, et al. Stability analysis for soil slopes with weak interlayers using the finite element upper bound limit analysis[J]. Journal of Railway Science and Engineering, 2019, 16(2): 351-358.
[11] 黄茂松, 王浩然, 刘怡林. 基于转动-平动组合破坏机构的含软弱夹层土坡降雨入渗稳定上限分析[J]. 岩土工程学报, 2012, 34(9): 1561-1567. HUANG Maosong, WANG Haoran, LIU Yilin. Rotation-translation combined mechanism for stability analysis of slopes with weak interlayer under rainfall condition[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(9): 1561-1567.
[12] 邓东平,李亮.水平条分法下边坡稳定性分析与计算方法研究[J].岩土力学,2012,33(10):3179-3188. DENG Dongping, LI Liang. Analysis of slope stability and research of calculation method under horizontal slice method [J]. Rock and Soil Mechanics, 2012, 33(10): 3179-3188.
[13] 李连祥, 刘嘉典, 李克金, 等. 济南典型地层HSS参数选取及适用性研究[J]. 岩土力学, 2019, 40(10): 4021-4029. LI Lianxiang, LIU Jiadian, LI Kejin, et al. Study of parameters selection and applicability of HSS model in typical stratum of Jinan[J]. Rock and Soil Mechanics, 2019, 40(10): 4021-4029.
[14] 徐帮树,刘日成,李连祥,等.复合土钉墙支护设计参数敏感性分析及边坡变形规律研究[J].岩土力学,2011,32(增刊2):393-400. XU Bangshu, LIU Richeng, LI Lianxiang, et al. Study of slope deformation and parameters sensitivity in supporting design of composite soil nailing wall[J]. Rock and Soil Mechanics, 2011, 32(Suppl.2): 393-400.
[15] 刘金龙, 栾茂田, 赵少飞, 等. 关于强度折减有限元方法中边坡失稳判据的讨论[J]. 岩土力学, 2005, 26(8): 1345-1348. LIU Jinlong, LUAN Maotian, ZHAO Shaofei, et al. Discussion on criteria for evaluating stability of slope in elastoplastic FEM based on shear strength reductiontechnique[J]. Rock and Soil Mechanics, 2005, 26(8): 1345-1348.
[16] JANBU N. Application of composite slip surfaces for stability analysis[J]. European Conferrence on Stability of Earth, 1954, 3: 43-49.
[17] WON J, YOU K, JEONG S, et al. Coupled effects in stability analysis of pile+slope systems[J]. Computers and Geotechnics, 2005, 32(4): 304-315.
[18] 方健, 邓琴. 含软弱夹层顺层边坡的抗滑桩加固稳定性分析[J]. 水利与建筑工程学报, 2015, 13(6): 156-160. FANG Jian, DENG Qin. Stability analysis of reinforced anti-slide piles in bedding slopes with weak interlayers[J]. Journal of Water Resources and Architectural Engineering, 2015, 13(6): 156-160.
[19] 许宝田,钱七虎,阎长虹,等.多层软弱夹层边坡岩体稳定性及加固分析[J].岩石力学与工程学报,2009,28(增刊2):3959-3964. XU Baotian, QIAN Qihu, YAN Changhong, et al. Stability and strengthening analyses of slope rock mass containing multi-weak interlayers[J].Chinese Journal of Rock Mechanics and Engineering, 2009, 28(Suppl.2): 3959-3964.
[20] 李连祥,张永磊,扈学波.基于PLAXIS 3D有限元软件的某坑中坑开挖影响分析[J].地下空间与工程学报,2016,12(增刊1):254-261. LI Lianxiang, ZHANG Yonglei, HU Xuebo. Finite Element Analysis of A Pit-in-pit Excavation based on PLAXIS 3D [J]. Chinese Journal of Underground Space and Engineering, 2016, 12(Suppl.1): 254-261.
[21] 刘国彬, 王卫东. 基坑工程手册[M]. 2版. 北京: 中国建筑工业出版社, 2009.
[1] 李连祥, 吕桂青, 张尚儒, 赵永新, 汪楚涵. 软弱夹层基坑圆弧-平面整体破坏模式分析与治理[J]. 隧道与地下工程灾害防治, 0, (): 1-.
[2] 钟小春,罗近海,邓有春,付伟. 稳定地层盾尾管片壁后注浆窜浆机理及模型试验[J]. 隧道与地下工程灾害防治, 2020, 2(2): 58-65.
[3] 陈健, 黄泽, 谢亦朋, 阳军生, 彭雨杨. 岩溶区隧道暗河溶厅综合整治方案及施工技术研究[J]. 隧道与地下工程灾害防治, 0, (): 1-.
[4] 陈健, 黄泽, 谢亦朋, 阳军生, 彭雨杨. 岩溶区隧道暗河溶厅综合整治方案及施工技术[J]. 隧道与地下工程灾害防治, 2021, 3(1): 82-91.
[5] 房倩, 杜建明, 王赶, 杨晓旭. 模型边界对圆形隧道开挖引起地表沉降的影响分析[J]. 隧道与地下工程灾害防治, 2022, 4(1): 10-17.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn