Please wait a minute...
 
隧道与地下工程灾害防治  2022, Vol. 4 Issue (1): 10-17    DOI: 10.19952/j.cnki.2096-5052.2022.01.02
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
模型边界对圆形隧道开挖引起地表沉降的影响分析
房倩,杜建明,王赶,杨晓旭
(北京交通大学隧道及地下工程教育部工程研究中心, 北京 100044
Influence of model boundary on ground settlement caused by excavation of a circular tunnel
FANG Qian, DU Jianming, WANG Gan, YANG Xiaoxu
Tunnel and Underground Engineering Research Center of Ministry of Education, Beijing Jiaotong University, Beijing 100044, China
下载:  PDF (5096KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 为明确圆形隧道开挖引起地表沉降分析所需模型边界尺寸,采用理论分析与数值模拟方法研究模型底边界与水平边界尺寸对圆形隧道开挖引起地表沉降的影响。理论分析采用Bobet、Park及Verruijt法,数值模拟采用弹性与弹塑性本构模型。研究结果表明:随着模型底边界尺寸增大,圆形隧道拱顶在地表的映射点由沉降逐渐转为隆起,当模型底部为半空间无限体时,圆形隧道拱顶在地表映射点无限隆起,这种现象显然有悖于工程实际;当模型底边界存在下卧硬质层时,如果下卧硬质层土的弹性模量是上覆土的5倍,则可将下卧硬质层土作为模型底边界条件;模型水平边界尺寸与底边界尺寸以及隧道半径关系密切,随着模型底边界尺寸以及隧道半径的增大,模型水平边界尺寸近似线性增加。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
房倩
杜建明
王赶
杨晓旭
关键词:  隧道工程  模型边界  理论分析  数值模拟  地表沉降    
Abstract: To explicate the size of model boundary required for the analysis of ground settlement caused by circular tunnel excavation, the influences of the sizes of bottom boundary and horizontal boundary of the model on the ground settlement caused by a circular tunnel excavation were studied by the theoretical analysis and the numerical simulation. The Bobet, Park and Verruijt methods were adopted in the process of the theoretical analysis. The elastic and elastoplastic constitutive models were adopted in the process of the numerical simulation. The results of research showed that the mapping point of the circular tunnel vault on the ground surface gradually changed from settlement to uplift as the size of the model bottom boundary increased. When the model bottom was a half-space infinite body, the mapping point of the circular tunnel vault on the ground surface bulged infinitely. This phenomenon was obviously contrary to engineering reality. When there was an underlying hard layer at the model bottom boundary, if the elastic modulus of the underlying hard layer was 5 times that of the overlying soil, the underlying hard layer could be used as the bottom boundary condition of the model. The size of the model horizontal boundary was closely related to the size of the model bottom boundary and the tunnel radius. The size of the model horizontal boundary increased approximately linearly with the increased of the size of the model bottom boundary and the tunnel radius.
Key words:  tunnel engineering    model boundary    theoretical analysis    numerical simulation    ground settlement
收稿日期:  2021-07-08      修回日期:  2021-10-28      发布日期:  2022-03-20     
中图分类号:  TU443  
基金资助: 国家自然科学基金高铁联合基金重点支持资助项目(U1934210);北京市自然科学基金资助项目(8202037)
作者简介:  房倩(1983— ),男,山东淄博人,博士,教授,博士生导师,国家万人计划青年拔尖人才,主要研究方向为隧道工程方面的教学与科研工作. E-mail:qfang@bjtu.edu.cn
引用本文:    
房倩, 杜建明, 王赶, 杨晓旭. 模型边界对圆形隧道开挖引起地表沉降的影响分析[J]. 隧道与地下工程灾害防治, 2022, 4(1): 10-17.
FANG Qian, DU Jianming, WANG Gan, YANG Xiaoxu. Influence of model boundary on ground settlement caused by excavation of a circular tunnel. Hazard Control in Tunnelling and Underground Engineering, 2022, 4(1): 10-17.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2022/V4/I1/10
[1] 朱才辉,李宁. 隧道施工诱发地表沉降估算方法及其规律分析[J]. 岩土力学, 2016,37(增刊2): 533-542. ZHU Caihui, LI Ning. Estimation method and laws analysis of surface settlement due to tunneling[J]. Rock and Soil Mechanics, 2016, 37(Suppl.2): 533-542.
[2] 胡长明,冯超,梅源,等. 西安富水砂层盾构施工Peck沉降预测公式改进[J]. 地下空间与工程学报, 2018, 14(1): 176-181. HU Changming, FENG Chao, MEI Yuan, et al. Modifying of peck's settlement calculation formula related to metro tunnel construction in Xi'an water-rich sand[J]. Chinese Journal of Underground Space and Engineering, 2018, 14(1): 176-181.
[3] 邓崴,潘建平,曾雅钰琼. 砂黏复合地层盾构隧道施工地表横向沉降分析[J]. 科学技术与工程, 2019, 19(18): 271-275. DENG Wei, PAN Jianping, ZENG Yayuqiong. Analysis on the lateral subsidence of surface in shield tunneling construction of sandclay composite stratum[J]. Science Technology and Engineering, 2019, 19(18): 271-275.
[4] 袁孝蓓,李俊才,张鹏, 等. 不同地质条件下盾构法施工沉降影响[J]. 南京工业大学学报(自然科学版), 2019, 41(4): 485-492. YUAN Xiaobei, LI Juncai, ZHANG Peng, et al. Influence of settlement range caused by shield method under different geological conditions[J]. Journal of Nanjing University of Technology(Natural Science Edition), 2019, 41(4): 485-492.
[5] 江英超,何川,胡雄玉,等. 砂土地层盾构隧道施工对地层扰动的室内掘进试验研究[J]. 岩石力学与工程学报, 2013, 32(12): 2550-2559. JIANG Yingchao, HE Chuan, HU Xiongyu, et al. Laboratory test study of soil disturbance caused by shield tunnelling in sandy strata[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(12): 2550-2559.
[6] 王海涛,金慧,涂兵雄,等. 砂土地层地铁盾构隧道施工对地层沉降影响的模型试验研究[J]. 中国铁道科学, 2017, 38(6): 70-78. WANG Haitao, JIN Hui, TU Bingxiong, et al. Model test study on influence of ground settlement caused by shield tunnel construction in sand stratum[J]. China Railway Science, 2017, 38(6): 70-78.
[7] 李伟平,李兴,薛亚东,等.砂卵石地层浅埋盾构隧道开挖面稳定模型试验[J].岩土工程学报, 2018, 40(增刊2): 199-203. LI Weiping, LI Xing, XUE Yadong, et al. Model tests on face stability of shallow shield tunnels in sandy cobble strata[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(Suppl.2): 199-203.
[8] 宋洋,王韦颐,杜春生. 砂-砾复合地层盾构隧道开挖面稳定模型试验与极限支护压力研究[J]. 岩土工程学报, 2020,42(12): 2206-2214. SONG Yang, WANG Weiyi, DU Chunsheng. Model tests on stability and ultimate support pressure of shield tunnel in sand-gravel composite stratum[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(12): 2206-2214.
[9] 米博,项彦勇. 砂土地层浅埋盾构隧道开挖渗流稳定性的模型试验和计算研究[J]. 岩土力学, 2020,41(3): 837-848. MI Bo, XIANG Yanyong. Model experiment and calculation analysis of excavation-seepage stability for shallow shield tunneling in sandy ground[J]. Rock and Soil Mechanics, 2020, 41(3): 837-848.
[10] 朱伟,秦建设,卢廷浩.砂土中盾构开挖面变形与破坏数值模拟研究[J]. 岩土工程学报, 2005, 27(8): 897-902. ZHU Wei, QIN Jianshe, LU Tinghao. Numerical study on face movement and collapse around shield tunnels in sand[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(8): 897-902.
[11] 王振飞,张成平.泥水盾构开挖面失稳破坏的颗粒流模拟研究[J]. 中国铁道科学, 2017, 38(3): 55-62. WANG Zhenfei, ZHANG Chengping. Research on particle flow simulation for excavation face instability of slurry shield[J]. China Railway Science, 2017, 38(3):55-62.
[12] 王俊,林国进,唐协,等. 砂土地层盾构隧道稳定性三维离散元研究[J]. 西南交通大学学报, 2018, 53(2):312-321. WANG Jun, LIN Guojin, TANG Xie, et al. Face stability analysis of shield tunnel in sandy ground using 3D DEM[J]. Journal of Southwest Jiaotong University, 2018, 53(2): 312-321.
[13] 王俊,何川,王闯,等. 砂土地层土压盾构隧道施工掌子面稳定性研究[J]. 岩土工程学报, 2018,40(1): 177-185. WANG Jun, HE Chuan, WANG Chuang, et al. Face stability analysis of EPB shield tunnel in sand[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(1): 177-185.
[14] 张坤勇,陈恕,王耀. 盾构地表沉降的数值分析及归一化模型建立[J]. 地下空间与工程学报, 2019, 15(3): 842-849. ZHANG Kunyong, CHEN Shu, WANG Yao. Numerical simulation and normalized model of surface settlement induced by shield tunneling excavation[J]. Chinese Journal of Underground Space and Engineering, 2019, 15(3): 842-849.
[15] LOGANATHAN N, POULOS H G. Analytical prediction for tunneling-induced ground movements in clays[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1998, 124(9):846-856.
[16] YANG X L, HUANG F, WANG J M. Modified image analytical solutions for ground displacement using nonuniform convergence model[J]. Journal of Central South University, 2011, 18(3):859-865.
[17] 林存刚,夏唐代,梁荣柱,等. 盾构掘进地面沉降虚拟镜像算法[J]. 岩土工程学报, 2014,36(8): 1438-1446. LIN Cungang, XIA Tangdai, LIANG Rongzhu, et al. Estimation of shield tunnelling-induced ground surface settlements by virtual image technique[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(8):1438-1446.
[18] CHOU W I, BOBET A. Predictions of ground deformations in shallow tunnels in clay[J]. Tunnelling and Underground Space Technology, 2002, 17(1): 3-19.
[19] 童磊,谢康和,程永锋,等.考虑椭圆化地层变形影响的浅埋隧道弹性解[J]. 岩土力学, 2009,30(2): 393-398. TONG Lei, XIE Kanghe, CHENG Yongfeng, et al. Elastic solution of sallow tunnels in clays considering oval deformation of ground[J]. Rock and Soil Mechanics, 2009, 30(2): 393-398.
[20] 王立忠,吕学金.复变函数分析盾构隧道施工引起的地基变形[J]. 岩土工程学报,2007,29(3),319-327. WANG Lizhong, LÜ Xuejin. A complex variable solution for different kinds of oval deformation around circular tunnel in an elastic half plane[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(3): 319-327.
[21] 韩凯航,张成平,王梦恕.浅埋隧道围岩应力及位移的显式解析解[J]. 岩土工程学报, 2014,36(12): 2253-2259. HAN Kaihang, ZHANG Chengping, WANG Mengshu. Explicit analytical solutions for stress and displacement of surrounding rock in shallow tunnels[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(12): 2253-2259.
[22] YANG X L, WANG J M. Ground movement prediction for tunnels using simplified procedure[J]. Tunnelling and Underground Space Technology, 2011, 26(3): 462-471.
[23] 刘波,杨伟红,张功,等.基于隧道不均匀变形的地表沉降随机介质理论预测模型[J]. 岩石力学与工程学报, 2018,37(8): 1943-1952. LIU Bo, YANG Weihong, ZHANG Gong, et al. A prediction model based on stochastic medium theory for ground surface settlement induced by non-uniform tunnel deformation[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(8):1943-1952.
[24] BOBET A. Analytical solutions for shallow tunnels in saturated ground[J]. Journal of Engineering Mechanics, 2001, 127(12):1258-1266.
[25] PARK K H. Elastic solution for tunneling-induced ground movements in clays[J]. International Journal of Geomechanics, 2004, 4(4): 310-318.
[26] VERRUIJT A. Deformations of an elastic half plane with a circular cavity[J]. International Journal of Solids and Structures, 1998, 35(21): 2795-2804.
[1] 孙港, 王军祥, 孟祥竹, 郭连军, 孙杰. 基于近场动力学理论的岩石双孔爆破动态断裂行为数值模拟[J]. 隧道与地下工程灾害防治, 2023, 5(2): 42-58.
[2] 黄兴, 张炜, 殷建钢, 施皓, 张晓磊. 填埋场扩建后下穿隧道结构的安全性[J]. 隧道与地下工程灾害防治, 2023, 5(1): 55-63.
[3] 赵兴东, 窦翔, 李勇, 王立君. 基于Ventsim的地下水封洞库建造期通风方式优选[J]. 隧道与地下工程灾害防治, 2023, 5(1): 8-17.
[4] 党晓宇, 马劲松. 基于桩板组合结构等代仰拱的公路隧道加固方案[J]. 隧道与地下工程灾害防治, 2023, 5(1): 90-96.
[5] 关振长,周宇轩,吕春波,吕荔炫. 空气间隔装药周边眼爆破精细化数值模拟[J]. 隧道与地下工程灾害防治, 2022, 4(4): 11-19.
[6] 韩兴博,陈子明,苏恩杰,梁晓明,宋桂峰,叶飞. 盾构隧道围岩压力分布规律及作用模式[J]. 隧道与地下工程灾害防治, 2022, 4(4): 34-43.
[7] 潘秋景,李晓宙,黄杉,汪来,王树英,方国光. 机器学习在盾构隧道智能施工中的应用——综述与展望[J]. 隧道与地下工程灾害防治, 2022, 4(3): 10-30.
[8] 李相兵,梁波,鲁思源. 考虑多因素影响的双侧壁导坑法施工参数研究[J]. 隧道与地下工程灾害防治, 2022, 4(2): 39-48.
[9] 黄昕,谷冠思,张子新,李昀. 考虑渗流的泥水平衡盾构隧道稳定性数值模拟[J]. 隧道与地下工程灾害防治, 2022, 4(2): 28-38.
[10] 石宗涛. 济南黄河隧道泥水盾构开挖面稳定性分析[J]. 隧道与地下工程灾害防治, 2022, 4(1): 71-77.
[11] 李钊, 梁庆国, 孙文, 曹小平. 隧道台阶法施工上台阶长度对隧道变形的影响[J]. 隧道与地下工程灾害防治, 2022, 4(1): 55-62.
[12] 曹成威, 石钰锋, 徐长节, 侯世磊, 龚宏华, 纪松岩. 某明挖深基坑地下连续墙非对称配筋优化设计[J]. 隧道与地下工程灾害防治, 2022, 4(1): 63-70.
[13] 张姣龙,高一民,张建,周浩,潘野,柯磊, 柳献. 一种模拟盾构刀盘破岩过程的模型试验设计原理和方法[J]. 隧道与地下工程灾害防治, 2021, 3(4): 20-28.
[14] 郭新新,朱安龙,王万平,汪波,王智佼,王振宇. 高应力炭质板岩隧道大变形特征及其机理分析[J]. 隧道与地下工程灾害防治, 2021, 3(4): 29-39.
[15] 赵高峰,徐志超,郝益民,扈晓冬,邓稀肥. 基于4D-LSM的隧道围岩爆破振动和损伤判定研究[J]. 隧道与地下工程灾害防治, 2021, 3(3): 11-19.
[1] QIAN Qihu. Scientific use of the urban underground space to construction the harmonious livable and beautiful city[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 1 -7 .
[2] DENG Mingjiang, LIU Bin. Challenges, countermeasures and development direction of geological forward-prospecting for TBM cluster tunneling in super-long tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 8 -19 .
[3] DING Xiuli, ZHANG Yuting, ZHANG Chuanjian, YAN Tianyou, HUANG Shuling. Review on countermeasures and their adaptability evaluation to tunnels crossing active faults[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 20 -35 .
[4] JIAO Yuyong, ZHANG Weishe, OU Guangzhao, ZOU Junpeng, CHEN Guanghui. Review of the evolution and mitigation of the water-inrush disaster in drilling-and-blasting excavated deep-buried tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 36 -46 .
[5] ZHANG Qingsong, ZHANG Lianzhen, LI Peng, FENG Xiao. New progress in grouting reinforcement theory of water-rich soft stratum in underground engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 47 -57 .
[6] XIA Kaiwen, XU Ying, CHEN Rong. Dynamic tests of rocks subjected to simulated deep underground environments[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 58 -75 .
[7] HONG Kairong. Study on rock breaking and wear of TBM hob in high-strength high-abrasion stratum[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 76 -85 .
[8] TAN Zhongsheng. Application experimental study of high-strength lattice girders with heat treatment in tunnel engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 86 -92 .
[9] CHEN Jianxun, LUO Yanbin. The stability of structure and its control technology for lager-span loess tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 93 -101 .
[10] JING Hongwen, YU Liyuan, SU Haijian, GU Jincai, YIN Qian. Development and application of catastrophic experiment system for water inrush in surrounding rock of deep tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 102 -110 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn