Please wait a minute...
 
隧道与地下工程灾害防治  2024, Vol. 6 Issue (3): 60-72    DOI: 10.19952/j.cnki.2096-5052.2024.03.07
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
基于微震监测与DFN模拟的金川水电站尾闸室破坏机制
皮锦添1,徐奴文1*,张丰收2,毛浩宇1,周相1,3,李怀良4,薄雾5
1. 四川大学山区河流保护与治理全国重点实验室, 四川 成都 610065;2. 同济大学土木工程学院地下建筑与工程系, 上海 200092;3. 国电大渡河流域水电开发有限公司, 四川 成都 610041;4. 成都理工大学地质灾害防治与地质环境保护国家重点实验室, 四川 成都 610059;5. 西藏大学工学院, 西藏 拉萨 850000
Failure mechanism of tailrace surge chamber in Jinchuan Hydropower Station based on microseismic monitoring and DFN simulation
PI Jintian1, XU Nuwen1*, ZHANG Fengshou2, MAO Haoyu1, ZHOU Xiang1,3, LI Huailiang4, BO Wu5
1. State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, Sichuan, China;
2. Department of Geotechnical Engineering, College of Civil Engineering, Tongji University, Shanghai 200092, China;
3. Guodian Dadu River Basin Hydropower Development Co., Ltd., Chengdu 610041, Sichuan, China;
4. State Key Laboratory of Geohazard and Prevention and Geoenvirenment Protection, Chengdu University of Technology, Chengdu 610059, Sichuan, China;
5. School of Engineering, Tibet University, Lasa 850000, Xizang, China
下载:  PDF (12621KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 为获取金川水电站受碳质千枚岩带影响下尾闸室围岩破坏机制,在施工期构建微震监测系统,获取地下洞室开挖过程微震事件时空分布规律和震源参数信息,同时建立三维离散元数值模型,针对地下厂房软弱断层使用离散裂隙网络(discrete fracture network, DFN)方法构建节理裂隙,综合获取地下洞室位移场和塑性破坏区分布规律,揭示地下洞室围岩破坏机理,基于数值模拟获得开挖过程诱发的合成微震事件,对软弱断层破坏模式和损伤程度进行研究。结果表明:微震事件空间分布特征与围岩破坏区域一致;横纵波能量比揭示了尾闸室破坏模式主要为张拉破坏;通过离散元数值模拟获得最大变形区域和塑性破坏区,计算结果与微震监测结果相互印证;DFN-离散元耦合方法生成的合成微震事件揭示了围岩潜在破坏区域,其结果与实际的微震事件空间分布较为吻合。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
皮锦添
徐奴文
张丰收
毛浩宇
周相
李怀良
薄雾
关键词:  地下洞室  微震监测  离散元法  离散裂隙网络  合成微震事件    
Abstract: In order to obtain the failure mechanism of the rock stability under the influence of carbonaceous phyllite band in tailrace surge chamber of Jinchuan Hydropower Station, an insitu microseismic(MS)monitoring system was established. In the construction period, the temporal and spatial distribution of MS events and source parameters were acquired during the excavation in underground caverns. A 3D discrete element numerical model was built. Discrete fracture network(DFN)was added for the weak fault of the underground caverns to build joint fissure, and the displacement and plastic zone distribution were obtained. The synthetic MS events induced by the excavation validated the failure mode and damage of the weak fault. The results suggested that there was a strong correlation between the spatial distribution of insitu MS events and the failure region of rock. The source parameter energy ratio of transverse and longitudinal waves of MS events revealed that the main failure mode of tailrace surge chamber was tension failure. The maximum deformation and plastic zone were obtained by discrete element numerical simulation, and the result was mutually verified with the MS monitoring results. The synthetic MS events generated by DFN-discrete element coupling method revealed the potential failure area of rock, and the result was in good agreement with the actual spatial distribution of MS events.
Key words:  underground caverns    microseismic monitoring    discrete element method    discrete fracture network    synthetic microseismic eventReceived: 2024-01-31    Revised: 2024-03-19    Accepted: 2024-03-19    Published: 2024-09-20
发布日期:  2024-09-20     
中图分类号:  TU45  
基金资助: 国家自然科学基金资助项目(U23A2060,42177143,42277461);四川省科技计划资助项目(2023NSFSC0812)
作者简介:  皮锦添(1999— ),男,甘肃兰州人,硕士研究生,主要研究方向为岩土工程灾害机理与微震监测. E-mail:18993145493@163.com. *通信作者简介:徐奴文(1981— ),男,湖北武汉人,研究员,博士生导师,博士,主要研究方向为岩土工程动力灾害. E-mail:xunuwen@scu.edu.cn
引用本文:    
皮锦添,徐奴文,张丰收,毛浩宇,周相,李怀良,薄雾. 基于微震监测与DFN模拟的金川水电站尾闸室破坏机制[J]. 隧道与地下工程灾害防治, 2024, 6(3): 60-72.
PI Jintian, XU Nuwen, ZHANG Fengshou, MAO Haoyu, ZHOU Xiang, LI Huailiang, BO Wu. Failure mechanism of tailrace surge chamber in Jinchuan Hydropower Station based on microseismic monitoring and DFN simulation. Hazard Control in Tunnelling and Underground Engineering, 2024, 6(3): 60-72.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2024/V6/I3/60
[1] QIAN Q H, ZHOU X P. Failure behaviors and rock deformation during excavation of underground cavern group for Jinping I Hydropower Station[J]. Rock Mechanics and Rock Engineering, 2018, 51(8): 2639-2651.
[2] LI H B, LIU M C, XING W B, et al. Failure mechanisms and evolution assessment of the excavation damaged zones in a large-scale and deeply buried underground powerhouse[J]. Rock Mechanics and Rock Engineering, 2017, 50(7): 1883-1900.
[3] 董林鹭, 李鹏, 李永红, 等. 高应力地下厂房顶拱开挖过程围岩力学响应与稳定性分析[J]. 岩石力学与工程学报, 2023, 42(5): 1096-1109. DONG Linlu, LI Peng, LI Yonghong, et al. Mechanical response and stability analysis of surrounding rock mass during roof arch excavation of underground powerhouse under high in situ stress[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(5): 1096-1109.
[4] 段淑倩, 冯夏庭, 江权, 等. 高地应力下白鹤滩地下洞室群含错动带岩体破坏模式及机制研究[J]. 岩石力学与工程学报, 2017, 36(4): 852-864. DUAN Shuqian, FENG Xiating, JIANG Quan, et al. Failure modes and mechanisms for rock masses with staggered zones of Baihetan underground caverns under high geostress[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(4): 852-864.
[5] 刘健, 朱赵辉, 吴浩, 等. 超大型地下洞室高边墙围岩变形影响特性研究[J]. 岩土力学, 2019, 40(10): 4030-4040. LIU Jian, ZHU Zhaohui, WU Hao, et al. Study of deformation characteristics of the high sidewall surrounding rock in super large undergroundcaverns[J]. Rock and Soil Mechanics, 2019, 40(10): 4030-4040.
[6] 董志宏,钮新强,丁秀丽,等.乌东德左岸地下厂房洞室群施工期围岩变形特征及反馈分析[J].岩土力学,2018,39(增刊2):326-336. DONG Zhihong, NIU Xinqiang, DING Xiuli, et al. Deformation characteristics and feedback analysis of surrounding rock of underground powerhouse at left bank of Wudongde Hydropower Station[J]. Rock and Soil Mechanics, 2018, 39(Suppl.2):326-336.
[7] HU Z H, WU B B, XU N W, et al. Effects of discontinuities on stress redistribution and rock failure: a case of underground caverns[J]. Tunnelling and Underground Space Technology, 2022, 127: 104583.
[8] 马克,唐春安,梁正召,等.基于微震监测的地下水封石油洞库施工期围岩稳定性分析[J].岩石力学与工程学报,2016,35(7):1353-1365. MA Ke, TANG Chun'an, LIANG Zhengzhao, et al. Stability analysis of the surrounding rock of underground water-sealed oil storage caverns based on microseismic monitoring during construction[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(7):1353-1365.
[9] XU N W, DAI F, LI B, et al. Comprehensive evaluation of excavation-damaged zones in the deep underground caverns of the Houziyan Hydropower Station, Southwest China[J]. Bulletin of Engineering Geology and the Environment, 2017, 76(1):275-293.
[10] 李彪,徐奴文,戴峰,等. 乌东德水电站地下厂房开挖过程微震监测与围岩大变形预警研究[J]. 岩石力学与工程学报,2017,36(增刊2):4102-4112. LI Biao, XU Nuwen, DAI Feng, et al. Microseismic monitoring and large deformation forecasting research during excavation of underground powerhouse at Wudongde Hydropower Station[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(Suppl.2):4102-4112.
[11] 赵金帅, 陈炳瑞, 江权, 等. 爆破荷载下白鹤滩大型地下厂房累积损伤机制研究[J]. 岩石力学与工程学报, 2022, 41(5): 916-925. ZHAO Jinshuai, CHEN Bingrui, JIANG Quan, et al. Study on cumulative damage mechanisms of Baihetan large underground powerhouse under blasting loads[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(5): 916-925.
[12] HUANG X, XU N W, WU W, et al. Instability of an intersecting fault-dyke system during deep rock excavation[J]. International Journal of Rock Mechanics and Mining Sciences, 2022, 153: 105087.
[13] 周春华,李云安,尹健民, 等. 荒沟抽水蓄能电站地下厂房开挖过程微震及电磁辐射活动特征研究[J]. 岩石力学与工程学报,2019,38(增刊2):3583-3594. ZHOU Chunhua, LI Yun'an, YIN Jianmin, et al. Study on the characteristics of microseismicity and electromagnetic radiation activity of the underground powerhouse at Huanggou Pumped Storage Power Station subjected to the excavation[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(Suppl.2):3583-3594.
[14] 周朝,尹健民,周春华,等. 考虑累积微震损伤效应的荒沟电站地下洞室群围岩稳定性分析[J].岩石力学与工程学报,2020,39(5):1011-1022. ZHOU Chao, YIN Jianmin, ZHOU Chunhua, et al. Stability analysis of surrounding rock mass of underground caverns at Huanggou Hydropower Station considering cumulative microseismic damage effect[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(5):1011-1022.
[15] 孟国涛, 樊义林, 江亚丽, 等. 白鹤滩水电站巨型地下洞室群关键岩石力学问题与工程对策研究[J]. 岩石力学与工程学报, 2016, 35(12): 2549-2560. MENG Guotao, FAN Yilin, JIANG Yali, et al. Key rock mechanical problems and measures for huge caverns of Baihetan Hydropower Plant[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(12): 2549-2560.
[16] 石崇, 褚卫江, 郑文棠. 块体离散元数值模拟技术及工程应用[M]. 北京: 中国建筑工业出版社, 2016.
[17] LI A, XU N W, DAI F, et al. Stability analysis and failure mechanism of the steeply inclined bedded rock masses surrounding a large underground opening[J]. Tunnelling and Underground Space Technology, 2018, 77: 45-58.
[18] 毛浩宇,徐奴文,李彪,等.基于离散元模拟和微震监测的白鹤滩水电站左岸地下厂房稳定性分析[J].岩土力学,2020, 41(7):2470-2484. MAO Haoyu, XU Nuwen, LI Biao, et al. Stability analysis of an underground powerhouse on the left bank of the Baihetan Hydropower Station based on discrete element simulation and microseismic monitoring[J]. Rock and Soil Mechanics, 2020, 41(7):2470-2484.
[19] 张頔,李邵军,徐鼎平,等. 双江口水电站主厂房开挖初期围岩变形破裂与稳定性分析研究[J]. 岩石力学与工程学报,2021,40(3):520-532. ZHANG Di, LI Shaojun, XU Dingping, et al. Investigation on deformation and cracking behaviors and stability analysis of surrounding rock mass of underground main powerhouse of Shuangjiangkou Hydropower Station during preliminary excavation[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(3): 520-532.
[20] 杨云浩,王仁坤,邢万波,等. 猴子岩水电站洞群硬脆性围岩变形破坏特征的3DEC分析[J]. 岩石力学与工程学报,2015,34(增刊2): 4178-4186. YANG Yunhao, WANG Renkun, XING Wanbo, et al. Analysis of deformation and failure of hard rock mass surrounding underground openings in Houziyan Hydropower Station by 3DEC numerical simulation[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(Suppl.2): 4178-4186.
[21] SHI A C, LI C J, HONG W B, et al. Comparative analysis of deformation and failure mechanisms of underground powerhouses on the left and right banks of Baihetan Hydropower Station[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2022, 14(3):731-745.
[22] LEI Q H, LATHAM J P, TSANG C F. The use of discrete fracture networks for modelling coupled geomechanical and hydrological behaviour of fractured rocks[J]. Computers and Geotechnics, 2017, 85: 151-176.
[23] DAMJANAC B, CUNDALL P. Application of distinct element methods to simulation of hydraulic fracturing in naturally fractured reservoirs[J]. Computers and Geotechnics, 2016, 71: 283-294.
[24] 韩帅,李明超,王刚. 基于控制圆法和迭代反演的岩体多边形裂隙网络模拟方法[J]. 岩石力学与工程学报,2019,38(8):1635-1646. HAN Shuai, LI Mingchao, WANG Gang. A polygonal DFN modeling approach based on the circle-controlled method and the iterative inversion algorithm[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(8):1635-1646.
[25] 蒋水华,陈佳栋,邹宗毅,等. 基于通用椭圆盘模型及3DEC实现的节理岩质边坡稳定性分析[J]. 岩石力学与工程学报,2023,42(7):1610-1622. JIANG Shuihua, CHEN Jiadong, ZOU Zongyi, et al. Stability analysis of jointed rock slopes based on a universal elliptical disc model and its realization in 3DEC[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(7):1610-1622.
[26] WU N, LIANG Z Z, ZHANG Z H, et al. Development and verification of three-dimensional equivalent discrete fracture network modelling based on the finite element method[J]. Engineering Geology, 2022, 306: 106759.
[27] 胡训健,卞康,刘建,等. 离散裂隙网络对岩石力学性质和声发射特性影响的颗粒流分析[J]. 岩土力学, 2022,43(增刊1):542-552. HU Xunjian, BIAN Kang, LIU Jian, et al. Particle flow code analysis of the effect of discrete fracture network on rock mechanical properties and acoustic emission characteristics[J]. Rock and Soil Mechanics, 2022, 43(Suppl.1):542-552.
[28] 毛浩宇, 徐奴文, 孙悦鹏, 等. 基于微震能量分形维数的围岩变形预警[J]. 隧道与地下工程灾害防治, 2023, 5(4): 9-20. MAO Haoyu, XU Nuwen, SUN Yuepeng, et al. Deformation warning of surrounding rock based on fractal dimension of microseismic energy[J]. Hazard Control in Tunnelling and Underground Engineering, 2023, 5(4): 9-20.
[29] XUE K S, ZHANG Z Y, ZHONG C L, et al. A fast numerical method and optimization of 3D discrete fracture network considering fracture aperture heterogeneity[J]. Advances in Water Resources, 2022, 162: 104164.
[30] ZHANG F S, MACK M. Integrating fully coupled geomechanical modeling with microsesmicity for the analysis of refracturing treatment[J]. Journal of Natural Gas Science and Engineering, 2017, 46: 16-25.
[31] WANG X H, ZHANG F S, TANG M R, et al. Numerical investigation of hydraulic fracture deflection in large-angle oblique horizontal wells with staged multi-cluster fracturing[J]. Geoenergy Science and Engineering, 2023, 222: 211436.
[32] ZHANG F S, YIN Z R, CHEN Z W, et al. Fault reactivation and induced seismicity during multistage hydraulic fracturing: microseismic analysis and geomechanical modeling[J]. SPE Journal, 2020, 25(2): 692-711.
[1] 毛浩宇, 徐奴文, 孙悦鹏, 周相, 丁新潮, 董林鹭. 基于微震能量分形维数的围岩变形预警[J]. 隧道与地下工程灾害防治, 2023, 5(4): 9-20.
[2] 黄笑, 肖培伟, 董林鹭, 杨兴国, 徐奴文. 高地应力地下洞室群开挖过程岩体力学响应及破坏机制[J]. 隧道与地下工程灾害防治, 2021, 3(3): 85-93.
[3] 张奇华,张煜,李利平,刘洪亮,石根华. 块体理论在地下洞室围岩稳定分析中的应用进展[J]. 隧道与地下工程灾害防治, 2020, 2(4): 9-18.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn