Please wait a minute...
 
隧道与地下工程灾害防治  2023, Vol. 5 Issue (4): 9-20    DOI: 10.19952/j.cnki.2096-5052.2023.04.02
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
基于微震能量分形维数的围岩变形预警
毛浩宇1,徐奴文1*,孙悦鹏1,周相1,2,丁新潮3,董林鹭1
1.四川大学水力学与山区河流开发保护国家重点实验室, 四川 成都 610065;2.国能大渡河金川水电建设有限公司, 四川 阿坝 624100;3.中国电建集团西北勘测设计研究院有限公司, 陕西 西安 710065
Deformation warning of surrounding rock based on fractal dimension of microseismic energy
MAO Haoyu1, XU Nuwen1*, SUN Yuepeng1, ZHOU Xiang1,2, DING Xinchao3, DONG Linlu1
1. State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, Sichuan, China;
2. Guodian Dadu River Jinchuan Hydropower Construction Co., Ltd., Aba 624100, Sichuan, China;
3. PowerChina Northwest Engineering Corporation Limited, Xi'an 710065, Shaanxi, China
下载:  PDF (12677KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 依托金川水电站泄洪洞工程,引入微震监测技术实时在线监测围岩变形破坏,研究泄洪洞围岩微震事件的时空演化特征,采用横纵波能量比ES/EP对金川水电站泄洪洞围岩破裂机制进行研究,将分形-岩石力学理论引入微震监测领域,分析微震在时间和空间上释放能量的分形维数演化规律。通过对分形维数的演化规律,现场勘察和常规监测数据进行比较分析,揭示分形维数与围岩在时间和空间上的大变形之间的关系:在变形发生前岩体的微震能量分形维数在时间和空间上都会出现降维现象,这可以作为预警前兆信号。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
毛浩宇
徐奴文
孙悦鹏
周相
丁新潮
董林鹭
关键词:  微震监测  破裂机制  分形-岩石力学  分形维数    
Abstract: Based on the spillway tunnel project of Jinchuan Hydropower Station, this research introduced the microseismic monitoring technology to monitor the deformation and failure of surrounding rock in real time, and studied the spatio-temporal evolution characteristics of microseismic events in surrounding rock of spillway tunnel. The failure mechanism of surrounding rock in spillway tunnel of Jinchuan Hydropower Station was analyzed by means of energy ratio of transverse and longitudinal waves ES/EP. The fractal rock mechanics theory was introduced into the field of microseismic, and the spatiotemporal evolution of the fractal dimension of energy released by microseismic was analyzed. The relationship between the fractal dimension and the deformation of surrounding rock in time and space was revealed through the comparative analysis of the evolution law of the fractal dimension and conventional monitoring data. The fractal dimension of the microseismic energy of rock mass before the deformation occured would appear dimension reduction in time and space, which could be used as a warning signal.
Key words:  microseismic monitoring    failure mechanism    fractal rock mechanics    fractal dimension
收稿日期:  2023-07-18      修回日期:  2023-09-17      发布日期:  2023-12-19     
中图分类号:  TU45  
基金资助: 国家自然科学基金资助项目(42177143;42277461);四川省科技计划资助项目(2023NSFSC0812)
通讯作者:  徐奴文(1981— ),男,湖北武汉人,教授,博士生导师,博士,主要研究方向为岩土工程动力灾害。    E-mail:  xunuwen@scu.edu.cn
作者简介:  毛浩宇(1995— ),男,四川乐山人,硕士研究生,主要研究方向为岩土工程灾害机理与微震监测. E-mail:maohaoyu@stu.scu.edu.cn
引用本文:    
毛浩宇, 徐奴文, 孙悦鹏, 周相, 丁新潮, 董林鹭. 基于微震能量分形维数的围岩变形预警[J]. 隧道与地下工程灾害防治, 2023, 5(4): 9-20.
MAO Haoyu, XU Nuwen, SUN Yuepeng, ZHOU Xiang, DING Xinchao, DONG Linlu. Deformation warning of surrounding rock based on fractal dimension of microseismic energy. Hazard Control in Tunnelling and Underground Engineering, 2023, 5(4): 9-20.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2023/V5/I4/9
[1] MANDELBROT B.分形对象:形、机遇和维数[M].文志英,译. 北京: 世界图书出版社, 1999.
[2] 谢和平.分形几何及其在岩土力学中的应用[J].岩土工程学报,1992, 14(1):14-24.
[3] 谢和平,薛秀谦.分形应用中的数学基础与方法[M].北京:科学出版社,1997.
[4] 徐超,王凯,郭琳,等.采动覆岩裂隙与渗流分形演化规律及工程应用[J]. 岩石力学与工程学报, 2022, 41(12):2389-2403. XU Chao, WANG Kai, GUO Lin, et al. Fractal evolution law of overlying rock fracture and seepage caused by mining and its engineering application[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(12):2389-2403.
[5] 孙盛玥,李迎春,唐春安,等. 天然岩石节理双阶粗糙度分形特征研究[J]. 岩石力学与工程学报, 2019, 38(12):2502-2511. SUN Shengyue, LI Yingchun, TANG Chun'an, et al. Dual fractal features of the surface roughness of natural rock joints[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(12):2502-2511.
[6] 金毅,刘丹丹,郑军领,等. 自然分形多孔储层复杂类型及其组构模式表征:理论与方法[J]. 岩石力学与工程学报, 2023, 42(4):781-797. JIN Yi, LIU Dandan, ZHENG Junling, et al. Principle and approach for the characterization of complexity types and their assembly pattern in natural fractal porous reservoir[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(4):781-797.
[7] 谢贤平,谢源. 分形理论与岩石爆破块度的预报研究[J].工程爆破,1995,1(1):26-32. XIE Xianping, XIE Yuan. Application of fractional method for forecasting rock blasting fragmentation[J]. Engineering Blasting, 1995, 1(1):26-32.
[8] 涂新斌,王思敬,岳中琦. 风化岩石的破碎分形及其工程地质意义[J]. 岩石力学与工程学报, 2005, 24(4):587-595. TU Xinbin, WANG Sijing, YUE Zhongqi. Fractal fragmentation of weathered rock and its application in engineering geology[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(4):587-595.
[9] 闫铁,李玮,毕雪亮,等.旋转钻井中岩石破碎能耗的分形分析[J].岩石力学与工程学报,2008, 27(增刊2):3649-3654. YAN Tie, LI Wei, BI Xueliang, et al. Fractal analysis of energy consumption of rock fragmentation in rotary drilling[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(Suppl.2):3649-3654.
[10] 晏俊伟,龙源,娄建武,等. 爆破地震波的分形机制[J]. 解放军理工大学学报(自然科学版), 2008, 9(4):367-372. YAN Junwei, LONG Yuan, LOU Jianwu, et al. Fractal mechanism of blasting seismic wave[J]. Journal of PLA University of Science and Technology(Natural Science Edition), 2008, 9(4):367-372.
[11] 张满仓,兰天伟,贾伟东,等. 断裂构造分形几何特征对冲击地压的控制作用研究[J]. 煤炭工程, 2023, 55(5):103-110. ZHANG Mancang, LAN Tianwei, JIA Weidong, et al. Effect of fractal geometric characteristics of fracture structure on rock burst control[J]. Coal Engineering, 2023, 55(5):103-110.
[12] 王浩,宗琦,汪海波,等. 冲击荷载下饱水凝灰岩断裂韧性及裂纹扩展分形特征研究[J]. 岩石力学与工程学报, 2023, 42(7):1709-1719. WANG Hao, ZONG Qi, WANG Haibo, et al. Fractal characteristics of fracture toughness and crack propagation of saturated tuff under impact loads[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(7):1709-1719.
[13] 丁自伟,李小菲,唐青豹,等. 砂岩颗粒孔隙分布分形特征与强度相关性研究[J]. 岩石力学与工程学报, 2020, 39(9):1787-1796. DING Ziwei, LI Xiaofei, TANG Qingbao, et al. Study on correlation between fractal characteristics of pore distribution and strength of sandstone particles[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(9):1787-1796.
[14] KUSUNOSE K, LEI X L, NISHIZAWA O, et al. Effect of grain size on fractal structure of acoustic emission hypocenter distribution in granitic rock[J]. Physics of the Earth and Planetary Interiors,1991,67(1/2):194-199.
[15] HIRATA T, SATOH T, ITO K. Fractal structure of spatial distribution of microfracturing in rock[J]. Geophysical Journal International, 1987, 90(2):369-374.
[16] SETO M, NISHIZAWA O, KATSUYAMA K. The variation of hypocenter distribution od AE events in coal under triaxial compression[J]. Journal of Acoustic Emission, 1994, 11:27-36.
[17] 于江,赵志浩,秦拥军.基于声发射和分形的钢筋混凝土受剪梁损伤[J].吉林大学学报(工学版),2021,51(2):620-630. YU Jiang, ZHAO Zhihao, QIN Yongjun. Damage of reinforced concrete shear beams based on acoustic emission and fractal[J]. Journal of Jilin University(Engineering and Technology Edition), 2021, 51(2):620-630.
[18] 刘沂琳,王创业,李昕昊.水-岩作用下砂岩声发射与红外辐射耦合研究[J].长江科学院院报,2022,39(1):127-133. LIU Yilin, WANG Chuangye, LI Xinhao. Coupling study of acoustic emission and infrared radiation in sandstone under water-rock interaction[J]. Journal of Yangtze River Scientific Research Institute, 2022, 39(1):127-133.
[19] 王创业,常新科,刘沂琳,等.单轴压缩条件下大理岩破裂过程声发射频谱演化特征实验研究[J].岩土力学,2020,41(增刊1):51-62. WANG Chuangye, CHANG Xinke, LIU Yilin, et al. Spectrum evolution characteristics of acoustic emission during the rupture process of marble under uniaxial compression condition[J]. Rock and Soil Mechanics, 2020, 41(Suppl.1):51-62.
[20] FENG X T, SETO M. Fractal structure of the time distribution of microfracturing in rocks[J].Geophysical Journal International, 1999, 136(1):275-285.
[21] FENG X T, SETO M. A new method of modelling the rock micro-fracturing process in double-torsion experiments using neural networks[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1999, 23(9):905-923.
[22] 李元辉,刘建坡,赵兴东,等.岩石破裂过程中的声发射b值及分形特征研究[J].岩土力学,2009,30(9):2559-2563. LI Yuanhui, LIU Jianpo, ZHAO Xingdong, et al. Study on b-value and fractal dimension of acoustic emission during rock failure process[J]. Rock and Soil Mechanics, 2009, 30(9):2559-2563.
[23] XIE H P. Fractals in rock mechanics[M].Rotterdam, Netherlands: A.A. Balkema,1993.
[24] XIE H P, PARISEAU W G. Fractal character and mechanism of rock bursts[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1993, 30(4):343-350.
[25] 于洋, 冯夏庭, 陈炳瑞, 等.深部岩体隧洞即时型岩爆微震震源体积的分形特征研究[J].岩土工程学报,2017,39(12):2173-2179. YU Yang, FENG Xiating, CHEN Bingrui, et al. Fractal characteristics of micro-seismic volume for different types of immediate rock-bursts in deep tunnels[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(12):2173-2179.
[26] 于洋. 深埋隧洞即时型岩爆孕育过程的微震信息特征分析及分形研究[D].沈阳:东北大学,2014. YU Yang. Fractal behaviour and characteristic analysis of micoseismic informations in nucleation process of immediate rockbursts in deep-buried tunnel[D]. Shenyang:Northeastern University, 2014.
[27] 钱波,徐奴文,肖培伟,等.双江口水电站地下厂房顶拱开挖围岩损伤分析及变形预警研究[J].岩石力学与工程学报, 2019, 38(12):2512-2524. QIAN Bo, XU Nuwen, XIAO Peiwei, et al. Damage analysis and deformation early warning of surrounding rock mass during top arch excavation of underground powerhouse of Shuangjiangkou hydropower station[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(12):2512-2524.
[28] BOORE D M, BOATWRIGHT J. Average body-wave radiation coefficients[J]. Bulletin of the Seismological Society of America, 1984, 74:1615-1621.
[29] BOATWRIGHT J, FLETCHER J B. The partition of radiated energy between P and S waves[J]. Bulletin of the Seismological Society of America,1984, 74(2):361-376.
[30] LU C P, LIU G J, LIU Y, et al. Microseismic multi-parameter characteristics of rockburst hazard induced by hard roof fall and high stress concentration[J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 76:18-32.
[31] 李彪.大型地下洞室开挖强卸荷过程微震监测与围岩稳定性研究[D].成都:四川大学,2017. LI Biao. Study on microseismic monitoring and stability of surrounding rock mass of large-scale underground caverns subject to excavation unloading[D]. Chengdu: Sichuan University, 2017.
[32] LIU J P, FENG X T, LI Y H, et al. Studies on temporal and spatial variation of microseismic activities in a deep metal mine[J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 60:171-179.
[33] 谢和平, PARISEAU W G. 岩爆的分形特征和机理[J].岩石力学与工程学报,1993,12(1):28-37. XIE Heping, PARISEAU W G. Fractal character and mechanism of rock bursts[J]. Chinese Journal of Rock Mechanics and Engineering, 1993, 12(1):28-37.
[1] 毛浩宇, 徐奴文, 孙悦鹏, 周相, 丁新潮, 董林鹭. 基于微震能量分形维数的围岩变形预警[J]. 隧道与地下工程灾害防治, 0, (): 1-0.
[2] 杨文东, 刘春天, 张祥, 陈晓鹏, 井文君, 张连震, 王柄淇, 秦昊. 锚索预应力损失与岩体蠕变耦合的理论分析[J]. 隧道与地下工程灾害防治, 2023, 5(2): 33-41.
[3] 宫凤强, 何志超. 钻孔卸压防治岩爆机理的试验研究进展与展望[J]. 隧道与地下工程灾害防治, 2023, 5(2): 1-23.
[4] 周旭明, 石钰锋, 张利敏, 张慧鹏, 曹成威, 陈昭阳. 边墙与仰拱连接处缺陷对隧道结构影响试验[J]. 隧道与地下工程灾害防治, 2023, 5(1): 74-80.
[5] 温森, 吴斐, 李胜, 张洛萌. 不同侧压系数和岩石强度下TBM滚刀破岩效率的数值模拟[J]. 隧道与地下工程灾害防治, 2021, 3(4): 9-19.
[6] 尹洪武, 朱耿德, 朱耿刚, 葛鑫博. 超深地层盐岩单轴压缩损伤演化过程分析[J]. 隧道与地下工程灾害防治, 2021, 3(4): 53-60.
[7] 黄笑, 肖培伟, 董林鹭, 杨兴国, 徐奴文. 高地应力地下洞室群开挖过程岩体力学响应及破坏机制[J]. 隧道与地下工程灾害防治, 2021, 3(3): 85-93.
[8] 王雪雅, 张一鸣. 裂面优化法稳定性分析——强度折减VS超重力[J]. 隧道与地下工程灾害防治, 2021, 3(3): 94-99.
[9] 王熙, 李华明, 武威, 朱合华, 刘发波, 张洪. 三维并行显式非连续变形分析接触判断与云计算研究进展[J]. 隧道与地下工程灾害防治, 2021, 3(3): 111-118.
[10] 龚秋明,吴帆,殷丽君. 岩石复合地层滚刀线性切割破岩试验研究[J]. 隧道与地下工程灾害防治, 2019, 1(2): 67-73.
[11] 王者超, 周尔康. 应力路径对砂岩真三轴变形宏细观特征影响[J]. 隧道与地下工程灾害防治, 2022, 4(2): 1-10.
[12] 赵文强, 周建伟, 袁兆廷, 吴铭祥, 蒋亚龙, 耿大新, 刘长红. 大跨径地下罐室穹顶预留中心岩柱开挖施工围岩稳定性模拟[J]. 隧道与地下工程灾害防治, 2022, 4(2): 81-89.
[13] 陶永虎,饶军应,熊鹏,彭浩,聂崇欣,赵昌杰,彭星,孔德禹,王亚奇. 地铁暗挖隧道下穿既有火车站站场施工方案安全性评估[J]. 隧道与地下工程灾害防治, 2020, 2(4): 74-82.
[14] 房倩, 杜建明, 王赶, 王中举, 王官清. 砂土隧道开挖地层变形规律及影响因素分析[J]. 隧道与地下工程灾害防治, 2020, 2(3): 67-76.
[15] 刘立鹏,王彦兵,宋倩. 水工有压隧洞衬砌启裂水头及围岩联合承载影响分析[J]. 隧道与地下工程灾害防治, 2020, 2(4): 52-58.
[1] QIAN Qihu. Scientific use of the urban underground space to construction the harmonious livable and beautiful city[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 1 -7 .
[2] DENG Mingjiang, LIU Bin. Challenges, countermeasures and development direction of geological forward-prospecting for TBM cluster tunneling in super-long tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 8 -19 .
[3] DING Xiuli, ZHANG Yuting, ZHANG Chuanjian, YAN Tianyou, HUANG Shuling. Review on countermeasures and their adaptability evaluation to tunnels crossing active faults[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 20 -35 .
[4] JIAO Yuyong, ZHANG Weishe, OU Guangzhao, ZOU Junpeng, CHEN Guanghui. Review of the evolution and mitigation of the water-inrush disaster in drilling-and-blasting excavated deep-buried tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 36 -46 .
[5] ZHANG Qingsong, ZHANG Lianzhen, LI Peng, FENG Xiao. New progress in grouting reinforcement theory of water-rich soft stratum in underground engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 47 -57 .
[6] XIA Kaiwen, XU Ying, CHEN Rong. Dynamic tests of rocks subjected to simulated deep underground environments[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 58 -75 .
[7] HONG Kairong. Study on rock breaking and wear of TBM hob in high-strength high-abrasion stratum[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 76 -85 .
[8] TAN Zhongsheng. Application experimental study of high-strength lattice girders with heat treatment in tunnel engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 86 -92 .
[9] CHEN Jianxun, LUO Yanbin. The stability of structure and its control technology for lager-span loess tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 93 -101 .
[10] JING Hongwen, YU Liyuan, SU Haijian, GU Jincai, YIN Qian. Development and application of catastrophic experiment system for water inrush in surrounding rock of deep tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 102 -110 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn