Please wait a minute...
 
隧道与地下工程灾害防治
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
基于ConDenseNet架构煤岩破坏识别模型及其优化研究
高贤成
(华晋焦煤有限责任公司沙曲二矿, 山西 吕梁 033000)
Research on coal damage identification model based on ConDenseNet architecture and its optimization
GAO Xiancheng
(Shaqu No.2 Coal Mine, Huajin Coking Coal Co., Ltd., Lü liang 033000, Shanxi, China)
下载:  PDF (1067KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 为深入了解煤岩的变形和破裂过程,建立基于声发射前兆信息的判别模型进行煤岩破坏的监测和预警。通过构建整合声发射时空特征的轻量级三维卷积煤岩破坏识别模型,研究煤岩不同破坏阶段识别模型的预测效果,并验证模型的泛化能力。结果表明:在识别煤岩损伤危险阶段的验证样本中,煤岩破坏识别模型预测准确率为99.39%,高风险样本的召回率也超过了99.2%,这表明三维卷积模型能有效捕捉煤岩破坏声发射波形的时空耦合信息。且ConDenseNet结合SE模型可以通过知识蒸馏优化进一步降低模型过拟合程度并获得性能和准确率兼备的煤岩破坏识别模型,验证了优化后的ConDenseNet结合SE模型在识别煤岩破坏及破坏预警方面的优越性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
高贤成
关键词:  深度学习  煤岩  变形破坏  知识蒸馏  三维卷积神经网络    
Abstract: In order to deeply understand the deformation and rupture process of coal samples, the early warning discrimination model of coal rock damage monitoring based on acoustic emission precursor information was established to provide an important basis for mine safety production. By constructing a lightweight three-dimensional convolutional coal rock damage identification model integrating acoustic emission temporal and spatial features, the prediction effect of the identification model for different stages of coal rock damage was studied, and the model's generalization ability was verified. The results showed that the prediction accuracy of the coal rock damage recognition model was 99.39% in the validation samples of identifying the damage hazard stages of coal samples, and the recall rate of the high-risk samples was also more than 99.20%, which indicated that 3D convolution could effectively captured the coupled spatio-temporal information of the acoustic emission waveforms of coal sample damage. Moreover, the ConDenseNet with SE model could be optimized by knowledge distillation to further reduce the degree of model overfitting and obtain a coal damage recognition model with both performance and accuracy, which verified the superiority of the optimized ConDenseNet with SE model in identifying coal damage and damage warning.
Key words:  deep learning    coal    deformation and failure    knowledge distillation    3D convolutional neural network
收稿日期:  2024-11-11      修回日期:  2024-12-11      发布日期:  2024-12-16     
中图分类号:  TU45  
基金资助: 国家自然科学基金面上资助项目(51874014) 
作者简介:  高贤成(1982-),男,山东巨野人,工程师,主要研究方向为煤矿安全生产、地质灾害防治。E-mail:gaoxianchengtougao@163.com
引用本文:    
高贤成. 基于ConDenseNet架构煤岩破坏识别模型及其优化研究[J]. 隧道与地下工程灾害防治, .
GAO Xiancheng. Research on coal damage identification model based on ConDenseNet architecture and its optimization. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1-13.
链接本文:  
[1] 蒋宇静, 王兴达, 张学朋. 远场地震作用下跨断层深埋隧道结构的动力变形破坏特征[J]. 隧道与地下工程灾害防治, 2023, 5(3): 1-11.
[2] 方恩权, 王耀东, 李星言, 马农杰. 地铁盾构隧道渗漏水病害图像识别算法[J]. 隧道与地下工程灾害防治, 2022, 4(4): 28-33.
[3] 张振南, 杨跃宗. 考虑顶板下沉效应的煤体卸荷动态断裂数值模拟[J]. 隧道与地下工程灾害防治, 2021, 3(3): 29-35.
[4] 于永军, 朱万成, 李连崇, 魏晨慧, 张秀凤, 秦超, 宋旭. 深地层煤岩组合体水力压裂裂缝扩展模拟研究[J]. 隧道与地下工程灾害防治, 2019, 1(3): 96-108.
[1] QIAN Qihu. Scientific use of the urban underground space to construction the harmonious livable and beautiful city[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 1 -7 .
[2] ZHOU Caigui, LI Jing, LIANG Qingguo, CHEN Kelin. Comparison of water inflow prediction methods of hydraulic diversion tunnels during construction[J]. Hazard Control in Tunnelling and Underground Engineering, 2023, 5(1): 32 -44 .
[3] SONG Changqing, FANG Xiaozheng , XIE Jian. Traffic noise data quality control method and its application in surface wave exploration[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -10 .
[4] HUANG Zheng, YE Zhangqian, ZHANG Jiawei, PENG Zimao, YAN Zhanshuo. The influence of intumescent fire retardant coating on the fire resistance of assembled frame tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -16 .
[5] ZHANG Ning, HUANG Xinjie, WANG Chuan, XU Bin, ZHANG Jiancheng, ZHANG Bo. Experimental and numerical simulation of high-pressure water jet cutting concrete[J]. Hazard Control in Tunnelling and Underground Engineering, 2023, 5(4): 47 -56 .
[6] . [J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(2): 124 -127 .
[7] JIA Rui, YANG Gang, ZHENG Gang. Influence of shield tunnel construction history on seismic response of tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2023, 5(3): 41 -51 .
[8] WANG Qiuzhe, HAN Rui, BAI Xiaoxiao, ZHAO Kai. Seismic stability of immersed tunnel under locked backfill[J]. Hazard Control in Tunnelling and Underground Engineering, 2023, 5(3): 71 -77 .
[9] . [J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(2): 128 -130 .
[10] HAO Junsuo, LIU Junfeng, LIU Hao, ZHAO Mingfan. Inducement and prevention technology of secondary disasters of water and mud inrush in tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2023, 5(4): 81 -92 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn