Please wait a minute...
 
隧道与地下工程灾害防治
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
深埋组合工法海底铁路隧道救援疏散及通风技术探讨
王东伟1,2,贺维国1,2,戴新1,2,田峰1,2,陈洋1
(1. 中铁第六勘察设计院集团有限公司,天津 300308;2. 中国中铁地下空间研发中心,天津 300131)
Exploration of rescue evacuation and ventilation technology for deep buried combined construction method subsea railway tunnel
WANG Dongwei1,2, HE Weiguo1,2, DAI Xin1,2, TIAN Feng1,2, CHEN Yang1
(1. China Railway LiuYuan Group Co., Ltd., Tianjin 300308,Chian;
2. China Railway Underground Space Research and Development Center, Tianjin 300131,Chian)
下载:  PDF (3664KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 为探究多种工法组合铁路隧道长距离、大纵坡及接头转换的救援疏散及机械通风的难题,以深埋长距离组合工法海底铁路隧道-珠江口隧道为例,应用疏散模拟软件Pathfinder分别对珠江口铁路隧道盾构段、矿山段及明挖段事故工况下的疏散时间进行模拟计算,同时根据计算结果制定了对应的救援疏散路径和机械通风措施。研究结果表明:3种不同工法疏散通道的通过能力,盾构段最弱,人员疏散难度较大,可以通过轨道层救援通道和板下疏散廊道同时进行疏散;矿山段斜井作为紧急出口的疏散能力最强。因此,本工程结合隧道各段工法特点,采用分区救援疏散方式,将隧道化长为短,多点疏散。根据疏散时间的计算结果看,隧道内非定点疏散的必需安全疏散时间是大于可用安全疏散时间,无法满足着火列车人员疏散的要求,隧道火灾工况时应将列车拖至隧道外进行疏散救援,隧道内仅考虑列车故障工况下人员的疏散救援要求。紧急出口、避难所按列车故障工况进行通风设计。盾构段隧道疏散廊道的通风采用两端机械送风的方式,依据门洞风速法计算送风量来满足人员疏散所需新风。结合人群疏散特点,采取靠近事故列车端头开启4+1扇防护门的措施,来克服长距离疏散廊道送风的难题。研究结果可为工法组合铁路隧道疏散和事故工况下的通风设计提供一定参考和思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王东伟
贺维国
戴新
田峰
陈洋
关键词:  铁路隧道  机械通风  疏散时间  组合工法  疏散路径    
Abstract: To explore the difficulties of rescue evacuation and mechanical ventilation for long-distance, large longitudinal slopes, and joint transitions in railway tunnels using various construction methods. Taking the Zhujiangkou Railway Tunnel, a deep buried and long distance subsea railway tunnel with combined construction method, as an example, the evacuation simulation software Pathfinder was used to simulate and calculate the evacuation time of the Pearl River Mouth Railway Tunnel under accident conditions in shield section, mine section and open cut section. At the same time, corresponding rescue evacuation paths and mechanical ventilation measures were formulated according to the calculation results. The research results indicated that among the three different construction methods, the shield tunnel section had the weakest capacity for evacuation, and the difficulty of personnel evacuation was relatively high. Evacuation could be carried out simultaneously through the track level rescue channel and the underground evacuation corridor; The inclined shaft in the mining section had the strongest evacuation ability as an emergency exit. Therefore, this project combined the characteristics of each section of the tunnel construction method and adopted a zoning rescue and evacuation method to shorten the tunnel and evacuate from multiple points. According to the calculation results of evacuation time, the necessary safe evacuation time for non fixed point evacuation inside the tunnel was greater than the available safe evacuation time, which could not meet the requirements for evacuation of personnel on fire trains. In case of tunnel fire, the train should be towed outside the tunnel for evacuation and rescue, and only the evacuation and rescue requirements for personnel under train fault conditions were considered inside the tunnel. Emergency exits and shelters were designed for ventilation according to train fault conditions. The ventilation of the evacuation corridor in the shield tunnel section adopted a mechanical air supply method at both ends, and the air supply volume was calculated based on the door opening wind speed method to meet the needs of fresh air for personnel evacuation. Based on the characteristics of crowd evacuation, measures were taken to open 4+1 protective doors near the end of the accident train to overcome the problem of air supply in long-distance evacuation channels. The research results can provide certain reference and ideas for the ventilation design of construction method combined railway tunnels under evacuation and accident conditions.
Key words:  railway tunnel    mechanical ventilation    evacuation time    combination method    evacuation path
收稿日期:  2025-01-02      修回日期:  2025-02-28      发布日期:  2025-03-06     
中图分类号:  U453.5  
基金资助: 中国中铁股份有限公司科技研究开发计划重大课题资助项目(2021-重大-14)
作者简介:  王东伟(1981—)男,河南上蔡人,正高级工程师,硕士,主要研究方向为地下工程、隧道通风及防灾疏散。E-mail:94639055@qq.com
引用本文:    
王东伟, 贺维国, 戴新, 田峰, 陈洋. 深埋组合工法海底铁路隧道救援疏散及通风技术探讨[J]. 隧道与地下工程灾害防治, .
WANG Dongwei, HE Weiguo, DAI Xin, TIAN Feng, CHEN Yang. Exploration of rescue evacuation and ventilation technology for deep buried combined construction method subsea railway tunnel. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1-12.
链接本文:  
[1] 李启弟, 梁庆国, 周仁, 杨家伟, 蔡遵乐. 甘青隧道初始地应力场分析及岩爆预测[J]. 隧道与地下工程灾害防治, 2024, 6(4): 50-60.
[2] 陈健, 黄泽, 谢亦朋, 阳军生, 彭雨杨. 岩溶区隧道暗河溶厅综合整治方案及施工技术[J]. 隧道与地下工程灾害防治, 2021, 3(1): 82-91.
[3] 申志军,皮圣. 浩吉重载铁路隧道建设管理与技术创新[J]. 隧道与地下工程灾害防治, 2020, 2(1): 42-52.
[4] 王明年,于丽,李琦,王旭. 高速铁路隧道防灾疏散救援技术研究综述[J]. 隧道与地下工程灾害防治, 2019, 1(2): 13-23.
[5] 田四明,赵勇,石少帅,胡杰. 中国铁路隧道建设期典型灾害防控方法现状、问题与对策[J]. 隧道与地下工程灾害防治, 2019, 1(2): 24-48.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn