Please wait a minute...
 
隧道与地下工程灾害防治  2024, Vol. 6 Issue (4): 50-60    DOI: 10.19952/j.cnki.2096-5052.2024.04.06
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
甘青隧道初始地应力场分析及岩爆预测
李启弟1,梁庆国1*,周仁2,杨家伟2,蔡遵乐1
1.兰州交通大学土木工程学院, 甘肃 兰州 730070;2. 中铁二局集团有限公司, 四川 成都 610031
Analysis of initial ground stress field and prediction of rockurst in Ganqing Tunnel
LI Qidi1, LIANG Qingguo1*, ZHOU Ren2, YANG Jiawei2, CAI Zunle1
1. School of Civil Engineering, Lanzhou Jiaotong University, Lanzhou 730070, Gansu, China;
2. China Railway No. 2 Engineering Group Co., Ltd., Chengdu 610031, Sichuan, China
下载:  PDF (8453KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 为探明西成铁路甘青隧道工程区初始地应力场分布规律并准确预测岩爆,采用多元线性回归原理,基于隧道工程区实测地应力数据、地形地貌、地层岩性、地质构造和试验研究成果等,利用FLAC3D数值模拟分析软件进行反演分析工程区初始地应力场。分析隧道开挖卸荷后的应力重分布和局部应力集中情况,并结合修正的“谷-陶岩爆判据”对隧道高地应力区段可能发生岩爆的具体部位及其强度进行预测。研究结果表明:甘青隧道处于地质构造复杂、应力高度集中以及大埋深的高地应力环境,燕山期闪长岩和三叠系板岩岩体坚硬、完整性良好,存在岩爆风险;甘青隧道工程区最大主应力为2.3~25.2 MPa,最小主应力为1.0~15.8 MPa,三向主应力在埋深小于300 m时关系为SH>Sh>SV(SH为大主应力,Sh为小主应力,SV为垂直主应力),在埋深为300~700 m时关系为SH>SV>Sh,且地应力特征以水平构造应力为主;甘青隧道整体呈现弱-中等岩爆状态,甘青隧道DK394+700—DK398+500具备发生高岩爆活动的条件,DK384+500—DK394+700、DK398+500—402+200具备发生中等岩爆活动的条件。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李启弟
梁庆国
周仁
杨家伟
蔡遵乐
关键词:  铁路隧道  初始地应力场  地应力场反演  岩爆预测  数值模拟    
Abstract: In order to explore the distribution law of the initial ground stress field in the Ganqing Tunnel engineering area of Xicheng Railway and accurately predict the rockburst, the principle of multiple linear regression was adopted. Based on the measured stress data, landform, stratum & lithology, geologic structure and experimental research results, etc., the FLAC3D numerical simulation analysis software was used to invert and analyze the initial stress field of the project area. The research analyzed the stress redistribution and local stress concentration after unloading during tunnel excavation, and predicted the specific location and strength of rock burst that may occur in the high stress section of the tunnel based on the modified "Gu-Tao rockburst criterion". The research results indicated that the Ganqing Tunnel is located in a high stress environment with complex geological structures, high stress concentration, and large burial depth. The Yanshanian diorite and Triassic slate rock masses were hard and intact, and there is a risk of rockburst; The maximum principal stress in the Ganqing Tunnel project area was 2.3-25.2 MPa, and the minimum principal stress was 1.0-15.8 MPa. The relationship between the triaxial principal stress was SH>Sh>SV when the burial depth was less than 300 m, and SH>SV>Sh when the burial depth was 300-700 m. The stress characteristics were mainly horizontal structural stress; The Ganqing Tunnel as a whole presented a weak to moderate rockburst state. The Ganqing Tunnel DK394+700—DK398+500 had the conditions for high rockburst activity, while DK384+500—DK394+700 and DK398+500—402+200 had the conditions for moderate rockburst activity.
Key words:  railway tunnel    initial ground stress field    ground stress field inversion    rockburst prediction    numerical simulation
收稿日期:  2024-06-23      修回日期:  2024-09-08      发布日期:  2025-01-08     
中图分类号:  U45  
基金资助: 国家自然科学基金资助项目(51968041);中国博士后科学基金资助项目(2021M693843);兰州交通大学“百名青年优秀人才培养计划”资助项目(2017150)
作者简介:  李启弟(1997— ),男,甘肃武山人,硕士研究生,主要研究方向为隧道与地下工程. E-mail:1813743077@qq.com. *通信作者简介:梁庆国(1976— ),男,甘肃临洮人,教授,博士生导师,博士,主要研究方向为隧道与地下工程. E-mail:lqg_39@163.com
引用本文:    
李启弟, 梁庆国, 周仁, 杨家伟, 蔡遵乐. 甘青隧道初始地应力场分析及岩爆预测[J]. 隧道与地下工程灾害防治, 2024, 6(4): 50-60.
LI Qidi, LIANG Qingguo, ZHOU Ren, YANG Jiawei, CAI Zunle. Analysis of initial ground stress field and prediction of rockurst in Ganqing Tunnel. Hazard Control in Tunnelling and Underground Engineering, 2024, 6(4): 50-60.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2024/V6/I4/50
[1] 钱七虎. 岩爆、冲击地压的定义、机制、分类及其定量预测模型[J]. 岩土力学, 2014, 35(1):1-6. QIAN Qihu. Definition, mechanism, classification and quantitative forecast model for rockburst and pressure bump[J]. Rock and Soil Mechanics, 2014, 35(1):1-6.
[2] FENG Xiating. Rock mechanics and engineering volume2:laboratory and field testing[M].London,Britain:CRC Press, 2016.
[3] WANG J, APEL D B, PU Y Y, et al. Numerical modeling for rockbursts: a state-of-the-art review[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2021, 13(2): 457-478.
[4] ZHANG Z Q, GONG R K, ZHANG H, et al. Initial ground stress field regression analysis and application in an extra-long tunnel in the western mountainous area of China[J]. Bulletin of Engineering Geology and the Environment, 2021, 80(6):4603-4619.
[5] 梁伟章, 赵国彦. 深部硬岩长短期岩爆风险评估研究综述[J]. 岩石力学与工程学报, 2022, 41(1):19-39. LIANG Weizhang, ZHAO Guoyan. A review of long-term and short-term rockburst risk evaluations in deep hard rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(1):19-39.
[6] ZHOU J, LI X B, MITRI H S. Evaluation method of rockburst: state-of-the-art literature review[J]. Tunnelling and Underground Space Technology Incorporating Trenchless Technology Research, 2018, 81:632-659.
[7] RAHIMI B, SHARIFZADEH M, FENG X T. Ground behaviour analysis, support system design and construction strategies in deep hard rock mining-justified in Western Australian's mines[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2020, 12(1):1-20.
[8] 余云燕,李国良,赵德安,等. 两水隧道地应力测量及三维地应力场多元回归分析[J]. 现代隧道技术, 2016, 53(4): 29-36. YU Yunyan, LI Guoliang, ZHAO Dean, et al. Geostress measurement and 3D multivariate regression analysis of the geostress field of the Liangshui Tunnel[J]. Modern Tunnelling Technology, 2016, 53(4):29-36.
[9] 代聪,何川,陈子全,等. 超大埋深特长公路隧道初始地应力场反演分析[J]. 中国公路学报, 2017, 30(10):100-108. DAI Cong, HE Chuan, CHEN Ziquan, et al. Inverse analysis of initial ground stress field of deep embedded and extra long highway tunnel[J]. China Journal of Highway and Transport, 2017, 30(10):100-108.
[10] 田青峰,袁照辉,张睿,等. 高地应力水平岩层隧道岩爆机制研究: 以大峡谷隧道为例[J]. 隧道建设(中英文), 2021, 41(增刊1):223-231. TIAN Qingfeng, YUAN Zhaohui, ZHANG Rui, et al. Rockburst mechanism of Daxiagu Tunnel in horizontal rock formation with high crustal stress [J]. Tunnel Construction, 2021, 41(Suppl.1):223-231.
[11] 周朝. 地下洞室群施工期微震活动特征及围岩稳定性分析[D]. 武汉: 长江科学院, 2019. ZHOU Chao. Microseismic activity characteristics and surrounding rock stability analysis of underground caverns during construction period[D]. Wuhan: Changjiang River Scientiffic Research Institute, 2019.
[12] 李鹏,袁维,张光明,等. 长大深埋高铁隧道三维地应力场反演方法及应用: 以银河山隧道为例[J]. 铁道勘察. 2023, 49(6):1-7. LI Peng, YUAN Wei, ZHANG Guangming, et al. Three-dimensional geostress inversion method and application for long and deeply buried tunnels:taking the Yinhe Mountain Tunnel as an example[J]. Railway Investigation and Surveying, 2023, 49(6):1-7.
[13] 郭怀志,马启超,薛玺成,等. 岩体初始应力场的分析方法[J]. 岩土工程学报, 1983, 5(3):64-75. GUO Huaizhi, MA Qichao, XUE Xicheng, et al. The analytical method of the initial stress field for rock masses[J]. Chinese Journal of Geotechnical Engineering, 1983, 5(3):64-75.
[14] KABWE E, WANG Y M. Review on rockburst theory and types of rock support in rockburst prone mines[J]. Open Journal of Safety Science and Technology, 2015, 5(4):104-121.
[15] 谷明成,何发亮,陈成宗. 秦岭隧道岩爆的研究[J]. 岩石力学与工程学报, 2002, 21(9):1324. GU Mingcheng, HE Faliang,CHEN Chengzong.Study on rockburst in Qingling Tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(9):1324.
[16] 谭以安. 岩爆类型及其防治[J]. 现代地质, 1991(4):450-456. TAN Yi'an. Types and treatments of rockburst[J]. Geoscience, 1991(4):450-456.
[17] 唐春安,李连崇,李常文,等. 岩土工程稳定性分析RFPA强度折减法[J]. 岩石力学与工程学报, 2006, 25(8): 1522-1530. TANG Chun'an, LI Lianchong, LI Changwen, et al. RFPA strength reduction method for stability analysis of geotechnical engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(8):1522-1530.
[18] 符亚鹏,何永旺,杨木高,等. 西宁至成都铁路甘青隧道设计及工程对策[J]. 铁道标准设计, 2023, 67(2): 109-117. FU Yapeng, HE Yongwang, YANG Mugao, et al. Design and engineering countermeasures of Ganqing Tunnel on Xining-Chengdu Railway[J].Railway Standard Design, 2023, 67(2):109-117.
[19] CAI M F, BROWN E T. Challenges in the mining and utilization of deep mineral resources[J]. Engineering, 2017, 3(4):432-433.
[20] WU Faquan, WU Jie, QI Shengwen. Phenomena and theoretical analysis for the failure of brittle rocks[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2010, 2(4):331-337.
[21] 水利水电科学研究院, 水利水电规划设计总院, 水利电力情报研究所, 等. 岩石力学参数手册[M]. 北京: 水利电力出版社, 1991:409-533.
[22] ZHOU K P, LIN Y, DENG H W, et al. Prediction of rock burst classification using cloud model with entropy weight[J]. Transactions of Nonferrous Metals Society of China, 2016, 26(7):1995-2002.
[23] WU K, SHAO Z S, QIN S. An analytical design method for ductile support structures in squeezing tunnels[J]. Archives of Civil and Mechanical Engineering, 2020, 20(3):91.
[24] 彭潜. 某长大隧道地应力特征及围岩开挖稳定性分析[D]. 武汉: 长江科学院, 2016. PENG Qian. Characteristics of geostress and stability analysis of surrounding rock excavation in a long tunnel[D]. Wuhan: Changjiang River Scientiffic Research Institute, 2016.
[25] PARISEAU W G. Design analysis in rock mechanics[M]. Boca Raton, USA: CRC Press, 2012.
[26] 何满潮, 任树林, 陶志刚. 深埋隧道灾变防控方法[J]. 工程地质学报, 2022, 30(6): 1777-1797. HE Manchao, REN Shulin, TAO Zhigang. Disaster prevention and control methods for deep buried tunnels[J]. Journal of Engineering Geology, 2022, 30(6): 1777-1797.
[27] 张镜剑,傅冰骏. 岩爆及其判据和防治[J]. 岩石力学与工程学报, 2008, 27(10): 2034-2042. ZHANG Jingjian, FU Bingjun. Rockburst and its criteria and control[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(10): 2034-2042.
[28] 陶振宇. 高地应力区的岩爆及其判别[J]. 人民长江, 1987(5):25-32. TAO Zhenyu. Rockburst and its discrimination in high-ground stress areas[J]. Yangtze River, 1987(5):25-32.
[29] 宫凤强, 代金豪, 王明洋, 等. 高地应力 “强度&应力” 耦合判据及其分级标准[J]. 工程地质学报, 2022, 30(6): 1893-1913. GONG Fengqiang, DAI Jinhao, WANG Mingyang, et al.“Strength & stress” coupling criterion and its grading standard for high geostress[J].Journal of Engineering Geology, 2022, 30(6):1893-1913.
[30] 靳宝成. 西宁至成都铁路甘青隧道TBM施工方案研究[J]. 铁道标准设计,2020,64(3): 107-111. JIN Baocheng. Research on TBM construction scheme of ganqing tunnel on Xining-Chengdu railway[J]. Railway Standard Design, 2020, 64(3):107-111.
[31] OU G Z, JIAO Y Y, ZHANG G H, et al. Collapse risk assessment of deep-buried tunnel during construction and its application[J]. Tunnelling and Underground Space Technology, 2021, 115:104019.
[32] 王庆武,巨能攀,杜玲丽,等. 深埋长大隧道岩爆预测与工程防治研究[J]. 水文地质工程地质,2016,43(6): 88-94. WANG Qingwu, JU Nengpan, DU Lingli, et al. Research on rockburst prediction and engineering measures of long and deep-lying tunnels[J]. Hydrogeology & Engineering Geology, 2016, 43(6):88-94.
[1] 王圣涛, 陈鹏涛, 刘爱武, 孙文昊, 张俊儒. 特大跨连续变断面隧道双导洞超前-中柱反向扩挖的施工力学行为[J]. 隧道与地下工程灾害防治, 2024, 6(4): 1-11.
[2] 赵泽乾,朱旻,包小华,杨春山,陈湘生. 下穿码头危化品堆场的超大直径盾构隧道抗爆性能评估方法[J]. 隧道与地下工程灾害防治, 2024, 6(4): 61-71.
[3] 杨立,夏增选,娄文杰,刘杉,李奉庭,武科. 山区深埋公路隧道穿越断层破碎带施工稳定性[J]. 隧道与地下工程灾害防治, 2024, 6(3): 32-42.
[4] 田瑞端,莫冠旺,李响. 超大断面扁平结构隧道矿山法超欠挖优化控制研究[J]. 隧道与地下工程灾害防治, 2024, 6(2): 84-98.
[5] 刘向阳,罗兵兵,吴静,张学富,黄耀明,李林杰. 高地温施工隧道冰块与通风组合降温效果对比研究[J]. 隧道与地下工程灾害防治, 2024, 6(2): 66-75.
[6] 闫治国, 王紫锐, 沈奕, 刘康. 碳氢曲线下大直径盾构隧道结构热力特性[J]. 隧道与地下工程灾害防治, 2024, 6(2): 25-36.
[7] 彭益, 张文, 王汉勋, 张彬, 孙哲. 某海岛地下水封油库渗流场数值模拟[J]. 隧道与地下工程灾害防治, 2024, 6(1): 94-104.
[8] 张宁, 黄新杰, 王川, 徐彬, 张建成, 张波. 高压水射流切割混凝土试验与数值模拟[J]. 隧道与地下工程灾害防治, 2023, 5(4): 47-56.
[9] 王伟, 刘英, 庄海洋, 赵凯, 陈国兴. 考虑内部结构的大直径盾构隧道抗震性能[J]. 隧道与地下工程灾害防治, 2023, 5(3): 78-85.
[10] 孙港, 王军祥, 孟祥竹, 郭连军, 孙杰. 基于近场动力学理论的岩石双孔爆破动态断裂行为数值模拟[J]. 隧道与地下工程灾害防治, 2023, 5(2): 42-58.
[11] 黄兴, 张炜, 殷建钢, 施皓, 张晓磊. 填埋场扩建后下穿隧道结构的安全性[J]. 隧道与地下工程灾害防治, 2023, 5(1): 55-63.
[12] 赵兴东, 窦翔, 李勇, 王立君. 基于Ventsim的地下水封洞库建造期通风方式优选[J]. 隧道与地下工程灾害防治, 2023, 5(1): 8-17.
[13] 党晓宇, 马劲松. 基于桩板组合结构等代仰拱的公路隧道加固方案[J]. 隧道与地下工程灾害防治, 2023, 5(1): 90-96.
[14] 关振长, 周宇轩, 吕春波, 吕荔炫. 空气间隔装药周边眼爆破精细化数值模拟[J]. 隧道与地下工程灾害防治, 2022, 4(4): 11-19.
[15] 黄昕, 谷冠思, 张子新, 李昀. 考虑渗流的泥水平衡盾构隧道稳定性数值模拟[J]. 隧道与地下工程灾害防治, 2022, 4(2): 28-38.
[1] WANG Shengtao, CHEN Pengtao, LIU Aiwu, SUN Wenhao, ZHANG Junru. Construction mechanics behavior of extra-large span continuous variable cross-section tunnels using dual guide tunnel advance-central column reverse excavation method[J]. Hazard Control in Tunnelling and Underground Engineering, 2024, 6(4): 1 -11 .
[2] SONG Changqing, FANG Xiaozheng, XIE Ji'an. Traffic noise data quality control method and its application in surface wave exploration[J]. Hazard Control in Tunnelling and Underground Engineering, 2024, 6(4): 20 -26 .
[3] LIU Liying, OU Zhenfeng, YANG Chunshan, DUAN Shanglei. Numerical simulation and field measurement analysis of coastal structures under immersed tunnel trench excavation[J]. Hazard Control in Tunnelling and Underground Engineering, 2024, 6(4): 12 -19 .
[4] SUN Chao, ZHANG Guangwei, DA Wuqiang, YU Zufeng. Anti-floating control technology for large-diameter shield tunnels of adjacent mountain[J]. Hazard Control in Tunnelling and Underground Engineering, 2024, 6(4): 27 -37 .
[5] LIU Jianbin, YANG Zhiyong, RAO Li, WANG Shuying, FANG Kejun, WANG Zhuo, YANG Zebin. Optimization of construction logistics organization for multi-section service tunnels in ultra-deep shafts[J]. Hazard Control in Tunnelling and Underground Engineering, 2024, 6(4): 38 -49 .
[6] GAO Xiancheng. Research on coal damage identification model based on ConDenseNet architecture and its optimization[J]. Hazard Control in Tunnelling and Underground Engineering, 2024, 6(4): 90 -98 .
[7] ZHAO Zeqian, ZHU Min, BAO Xiaohua, YANG Chunshan, CHEN Xiangsheng. Assessing the blast resistance performance of ultra-large diameter shield tunnels passing under hazardous chemical containers at docks[J]. Hazard Control in Tunnelling and Underground Engineering, 2024, 6(4): 61 -71 .
[8] ZHONG Jianmin, ZHANG Liangliang, HE Yingdao, LUO Chiheng, XIONG Yifan, WANG Chao. Key design techniques of the north extension project of Jinan Jiluo Road Yellow River Tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2024, 6(4): 72 -80 .
[9] WEI Songyuan, LI Hanshuo, PENG Zhenhua, WANG Zhechao, LI Wei. Experimental analysis of vertical water curtain and effectiveness of water curtain system in an underground water sealed cavern[J]. Hazard Control in Tunnelling and Underground Engineering, 2024, 6(4): 81 -89 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn