Analysis of initial ground stress field and prediction of rockurst in Ganqing Tunnel
LI Qidi1, LIANG Qingguo1*, ZHOU Ren2, YANG Jiawei2, CAI Zunle1
1. School of Civil Engineering, Lanzhou Jiaotong University, Lanzhou 730070, Gansu, China; 2. China Railway No. 2 Engineering Group Co., Ltd., Chengdu 610031, Sichuan, China
Abstract: In order to explore the distribution law of the initial ground stress field in the Ganqing Tunnel engineering area of Xicheng Railway and accurately predict the rockburst, the principle of multiple linear regression was adopted. Based on the measured stress data, landform, stratum & lithology, geologic structure and experimental research results, etc., the FLAC3D numerical simulation analysis software was used to invert and analyze the initial stress field of the project area. The research analyzed the stress redistribution and local stress concentration after unloading during tunnel excavation, and predicted the specific location and strength of rock burst that may occur in the high stress section of the tunnel based on the modified "Gu-Tao rockburst criterion". The research results indicated that the Ganqing Tunnel is located in a high stress environment with complex geological structures, high stress concentration, and large burial depth. The Yanshanian diorite and Triassic slate rock masses were hard and intact, and there is a risk of rockburst; The maximum principal stress in the Ganqing Tunnel project area was 2.3-25.2 MPa, and the minimum principal stress was 1.0-15.8 MPa. The relationship between the triaxial principal stress was SH>Sh>SV when the burial depth was less than 300 m, and SH>SV>Sh when the burial depth was 300-700 m. The stress characteristics were mainly horizontal structural stress; The Ganqing Tunnel as a whole presented a weak to moderate rockburst state. The Ganqing Tunnel DK394+700—DK398+500 had the conditions for high rockburst activity, while DK384+500—DK394+700 and DK398+500—402+200 had the conditions for moderate rockburst activity.
李启弟, 梁庆国, 周仁, 杨家伟, 蔡遵乐. 甘青隧道初始地应力场分析及岩爆预测[J]. 隧道与地下工程灾害防治, 2024, 6(4): 50-60.
LI Qidi, LIANG Qingguo, ZHOU Ren, YANG Jiawei, CAI Zunle. Analysis of initial ground stress field and prediction of rockurst in Ganqing Tunnel. Hazard Control in Tunnelling and Underground Engineering, 2024, 6(4): 50-60.
[1] 钱七虎. 岩爆、冲击地压的定义、机制、分类及其定量预测模型[J]. 岩土力学, 2014, 35(1):1-6. QIAN Qihu. Definition, mechanism, classification and quantitative forecast model for rockburst and pressure bump[J]. Rock and Soil Mechanics, 2014, 35(1):1-6. [2] FENG Xiating. Rock mechanics and engineering volume2:laboratory and field testing[M].London,Britain:CRC Press, 2016. [3] WANG J, APEL D B, PU Y Y, et al. Numerical modeling for rockbursts: a state-of-the-art review[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2021, 13(2): 457-478. [4] ZHANG Z Q, GONG R K, ZHANG H, et al. Initial ground stress field regression analysis and application in an extra-long tunnel in the western mountainous area of China[J]. Bulletin of Engineering Geology and the Environment, 2021, 80(6):4603-4619. [5] 梁伟章, 赵国彦. 深部硬岩长短期岩爆风险评估研究综述[J]. 岩石力学与工程学报, 2022, 41(1):19-39. LIANG Weizhang, ZHAO Guoyan. A review of long-term and short-term rockburst risk evaluations in deep hard rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(1):19-39. [6] ZHOU J, LI X B, MITRI H S. Evaluation method of rockburst: state-of-the-art literature review[J]. Tunnelling and Underground Space Technology Incorporating Trenchless Technology Research, 2018, 81:632-659. [7] RAHIMI B, SHARIFZADEH M, FENG X T. Ground behaviour analysis, support system design and construction strategies in deep hard rock mining-justified in Western Australian's mines[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2020, 12(1):1-20. [8] 余云燕,李国良,赵德安,等. 两水隧道地应力测量及三维地应力场多元回归分析[J]. 现代隧道技术, 2016, 53(4): 29-36. YU Yunyan, LI Guoliang, ZHAO Dean, et al. Geostress measurement and 3D multivariate regression analysis of the geostress field of the Liangshui Tunnel[J]. Modern Tunnelling Technology, 2016, 53(4):29-36. [9] 代聪,何川,陈子全,等. 超大埋深特长公路隧道初始地应力场反演分析[J]. 中国公路学报, 2017, 30(10):100-108. DAI Cong, HE Chuan, CHEN Ziquan, et al. Inverse analysis of initial ground stress field of deep embedded and extra long highway tunnel[J]. China Journal of Highway and Transport, 2017, 30(10):100-108. [10] 田青峰,袁照辉,张睿,等. 高地应力水平岩层隧道岩爆机制研究: 以大峡谷隧道为例[J]. 隧道建设(中英文), 2021, 41(增刊1):223-231. TIAN Qingfeng, YUAN Zhaohui, ZHANG Rui, et al. Rockburst mechanism of Daxiagu Tunnel in horizontal rock formation with high crustal stress [J]. Tunnel Construction, 2021, 41(Suppl.1):223-231. [11] 周朝. 地下洞室群施工期微震活动特征及围岩稳定性分析[D]. 武汉: 长江科学院, 2019. ZHOU Chao. Microseismic activity characteristics and surrounding rock stability analysis of underground caverns during construction period[D]. Wuhan: Changjiang River Scientiffic Research Institute, 2019. [12] 李鹏,袁维,张光明,等. 长大深埋高铁隧道三维地应力场反演方法及应用: 以银河山隧道为例[J]. 铁道勘察. 2023, 49(6):1-7. LI Peng, YUAN Wei, ZHANG Guangming, et al. Three-dimensional geostress inversion method and application for long and deeply buried tunnels:taking the Yinhe Mountain Tunnel as an example[J]. Railway Investigation and Surveying, 2023, 49(6):1-7. [13] 郭怀志,马启超,薛玺成,等. 岩体初始应力场的分析方法[J]. 岩土工程学报, 1983, 5(3):64-75. GUO Huaizhi, MA Qichao, XUE Xicheng, et al. The analytical method of the initial stress field for rock masses[J]. Chinese Journal of Geotechnical Engineering, 1983, 5(3):64-75. [14] KABWE E, WANG Y M. Review on rockburst theory and types of rock support in rockburst prone mines[J]. Open Journal of Safety Science and Technology, 2015, 5(4):104-121. [15] 谷明成,何发亮,陈成宗. 秦岭隧道岩爆的研究[J]. 岩石力学与工程学报, 2002, 21(9):1324. GU Mingcheng, HE Faliang,CHEN Chengzong.Study on rockburst in Qingling Tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(9):1324. [16] 谭以安. 岩爆类型及其防治[J]. 现代地质, 1991(4):450-456. TAN Yi'an. Types and treatments of rockburst[J]. Geoscience, 1991(4):450-456. [17] 唐春安,李连崇,李常文,等. 岩土工程稳定性分析RFPA强度折减法[J]. 岩石力学与工程学报, 2006, 25(8): 1522-1530. TANG Chun'an, LI Lianchong, LI Changwen, et al. RFPA strength reduction method for stability analysis of geotechnical engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(8):1522-1530. [18] 符亚鹏,何永旺,杨木高,等. 西宁至成都铁路甘青隧道设计及工程对策[J]. 铁道标准设计, 2023, 67(2): 109-117. FU Yapeng, HE Yongwang, YANG Mugao, et al. Design and engineering countermeasures of Ganqing Tunnel on Xining-Chengdu Railway[J].Railway Standard Design, 2023, 67(2):109-117. [19] CAI M F, BROWN E T. Challenges in the mining and utilization of deep mineral resources[J]. Engineering, 2017, 3(4):432-433. [20] WU Faquan, WU Jie, QI Shengwen. Phenomena and theoretical analysis for the failure of brittle rocks[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2010, 2(4):331-337. [21] 水利水电科学研究院, 水利水电规划设计总院, 水利电力情报研究所, 等. 岩石力学参数手册[M]. 北京: 水利电力出版社, 1991:409-533. [22] ZHOU K P, LIN Y, DENG H W, et al. Prediction of rock burst classification using cloud model with entropy weight[J]. Transactions of Nonferrous Metals Society of China, 2016, 26(7):1995-2002. [23] WU K, SHAO Z S, QIN S. An analytical design method for ductile support structures in squeezing tunnels[J]. Archives of Civil and Mechanical Engineering, 2020, 20(3):91. [24] 彭潜. 某长大隧道地应力特征及围岩开挖稳定性分析[D]. 武汉: 长江科学院, 2016. PENG Qian. Characteristics of geostress and stability analysis of surrounding rock excavation in a long tunnel[D]. Wuhan: Changjiang River Scientiffic Research Institute, 2016. [25] PARISEAU W G. Design analysis in rock mechanics[M]. Boca Raton, USA: CRC Press, 2012. [26] 何满潮, 任树林, 陶志刚. 深埋隧道灾变防控方法[J]. 工程地质学报, 2022, 30(6): 1777-1797. HE Manchao, REN Shulin, TAO Zhigang. Disaster prevention and control methods for deep buried tunnels[J]. Journal of Engineering Geology, 2022, 30(6): 1777-1797. [27] 张镜剑,傅冰骏. 岩爆及其判据和防治[J]. 岩石力学与工程学报, 2008, 27(10): 2034-2042. ZHANG Jingjian, FU Bingjun. Rockburst and its criteria and control[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(10): 2034-2042. [28] 陶振宇. 高地应力区的岩爆及其判别[J]. 人民长江, 1987(5):25-32. TAO Zhenyu. Rockburst and its discrimination in high-ground stress areas[J]. Yangtze River, 1987(5):25-32. [29] 宫凤强, 代金豪, 王明洋, 等. 高地应力 “强度&应力” 耦合判据及其分级标准[J]. 工程地质学报, 2022, 30(6): 1893-1913. GONG Fengqiang, DAI Jinhao, WANG Mingyang, et al.“Strength & stress” coupling criterion and its grading standard for high geostress[J].Journal of Engineering Geology, 2022, 30(6):1893-1913. [30] 靳宝成. 西宁至成都铁路甘青隧道TBM施工方案研究[J]. 铁道标准设计,2020,64(3): 107-111. JIN Baocheng. Research on TBM construction scheme of ganqing tunnel on Xining-Chengdu railway[J]. Railway Standard Design, 2020, 64(3):107-111. [31] OU G Z, JIAO Y Y, ZHANG G H, et al. Collapse risk assessment of deep-buried tunnel during construction and its application[J]. Tunnelling and Underground Space Technology, 2021, 115:104019. [32] 王庆武,巨能攀,杜玲丽,等. 深埋长大隧道岩爆预测与工程防治研究[J]. 水文地质工程地质,2016,43(6): 88-94. WANG Qingwu, JU Nengpan, DU Lingli, et al. Research on rockburst prediction and engineering measures of long and deep-lying tunnels[J]. Hydrogeology & Engineering Geology, 2016, 43(6):88-94.