Please wait a minute...
 
隧道与地下工程灾害防治
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
高地温隧道热害防治技术及发展趋势
王升1,2,3,4, 阳灵润1,2*, 李利平3, 韦芹1,2, 胡学兵4
(1. 重庆交通大学山区桥梁及隧道工程国家重点实验室,重庆 400074;2. 重庆交通大学土木工程学院,重庆,400074;3. 山东大学高端工程机械智能制造全国重点实验室,山东 济南,250012;4. 招商局重庆交通科研设计院有限公司,重庆,400067)  
Teat damage prevention technology and development trend of high  temperature tunnels
WANG Sheng1,2,3,4, YANG Lingrun1,2*, LI Liping3, WEI Qin1,2, HU Xuebing4
(1.State Key Laboratory of Mountain Bridge and Tunnel Engineering, Chongqing Jiaotong University, Chongqing 400074, China;
2.School of Civil Engineering, Chongqing Jiaotong University, Chongqing 400074, China;
3.State Key Laboratory of Intelligent Manufacturing of Advanced Construction Machinery, Shandong University, Jinan 250012, Shandong,China;
4.China Merchants Chongqing Communications Technology Research & Design Institute Co., Ltd., Chongqing 400067, China)
下载:  PDF (1773KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过明晰高地温隧道热害多源传热机制不明、热害分类量化不完善、降温防控体系低效等问题,可助力构建隧道热害协同主动防控体系。本研究系统分析高地温隧道热害的地质成因、热害影响及防控技术体系,揭示岩浆活动、岩石特性、地层构造及深循环地下水构成的多源热传递机制,阐明各因素对热异常形成的控制作用、热害分类未量化因素、防治手段面临的挑战与突破方向以及热害防治发展趋势。研究表明,高地温环境导致围岩力学性能劣化,并引发锚杆锚固强度下降、混凝土衬砌开裂及耐久性衰退等问题。针对热害防控,提出超前水平钻探测温预警技术,建立通风降温、喷雾降温、隔热材料及耐高温材料的协同防控体系并指出目前防控体系的缺陷以及突破方向。研究指出,极端高温下多技术协同的量化阈值尚未明确、轻骨料混凝土在强度与隔热性平衡上存在材料极限以及亟需开发具有优异耐高温性能和环境稳定性的复合材料。最后,提出3个热害防治发展趋势,使热害防治从被动响应转向主动防控,为川藏铁路等工程提供更安全、经济的解决方案。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王升
阳灵润
李利平
韦芹
胡学兵
关键词:  高地温隧道  地质发育  围岩劣化  热害防治  隔热结构    
Abstract: By clarifying the problems constraining the prevention and control of thermal damage in high-geothermal tunnels—including unclear multi-source heat transfer mechanisms, imperfect quantification of thermal damage classification,and low efficiency of cooling and prevention systems—the foundation was laid for building a collaborative and proactive thermal damage control system.This research systematically analyzed the geological causes,impacts,and prevention and control technology systems related to high-geothermal tunnel hazards.The multi-source heat transfer mechanism composed of magmatic activity,rock properties,structural geology,and deep-circulating groundwater was revealed.The controlling effects of various factors on thermal anomaly formation were clarified,along with unquantified factors in thermal hazard classification,challenges in mitigation methods,and future development trends.It was found that high-geothermal conditions lead to the deterioration of the mechanical properties of surrounding rock,resulting in reduced bolt anchoring strength,cracking of concrete linings,and decreased durability.To address thermal hazards,an advanced horizontal drilling temperature detection and early warning technology was proposed,and a collaborative prevention system integrating ventilation cooling,spray cooling,thermal insulation materials,and high-temperature-resistant materials was established.Limitations of the current system and potential breakthroughs were identified.key challenges included the lack of clear quantitative thresholds for multi-technology coordination under extreme temperatures,the limited balance between strength and thermal insulation in lightweight aggregate concrete,and the urgent need for composite materials with excellent high-temperature resistance and environmental stability.Finally,three development trends for thermal hazard prevention were proposed,facilitating a shift from passive response to active prevention and control,thereby providing safer and more economical solutions for projects such as the Sichuan–Tibet Railway.
Key words:  high temperature tunnel    geological development    surrounding rock deterioration    thermal damage prevention and control    heat insulation structure
收稿日期:  2025-07-24      修回日期:  2025-12-01      发布日期:  2025-12-02     
中图分类号:  U43  
  TU42  
基金资助: 国家自然科学基金资助项目(52408415);中国博士后科学基金面上资助项目(2024M752751);重庆市自然科学基金创新发展联合基金资助项目(CSTB2025NSCQ-LZX0110);重庆市教委科学技术研究资助项目(KJQN202300714;KJQN202201426);山东大学高端工程机械智能制造全国重点实验室开放基金课题资助项目(ACMKF2024-06)
通讯作者:  阳灵润(2002—),男,湖南邵阳人,硕士研究生,主要研究方向为隧道及地下工程灾害防控研究。    E-mail:  2369358859@qq.com
作者简介:  王升(1989—),男,山东泰安人,副教授,硕士生导师,博士,主要研究方向为岩土工程。 E-mail: wshsdu@163.com
引用本文:    
王升, 阳灵润, 李利平, 韦芹, 胡学兵. 高地温隧道热害防治技术及发展趋势[J]. 隧道与地下工程灾害防治, .
WANG Sheng, YANG Lingrun, LI Liping, WEI Qin, HU Xuebing. Teat damage prevention technology and development trend of high  temperature tunnels. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1-25.
链接本文:  
[1] 张海兰、吴云鹏、邹仁、马晓龙、李坤泰、高启栋、牛磊、周海孝. 基于SPH-FEM耦合模拟的隧道深埋排水沟爆破技术优化研究[J]. 隧道与地下工程灾害防治, 0, (): 1-18.
[2] 丁建奇、王陈成、朱向闪、张翔、傅刚、徐敬民. 大直径隧道施工对临近建筑的作用机制[J]. 隧道与地下工程灾害防治, 0, (): 1-13.
[3] 闫治国, 王紫锐, 沈奕, 刘康. 碳氢曲线下大直径盾构隧道结构热力特性分析[J]. 隧道与地下工程灾害防治, 0, (): 1-15.
[4] 王晖, 黄昕, 金国龙. 酸性腐蚀下混凝土试件物理力学性能演化规律[J]. 隧道与地下工程灾害防治, 2023, 5(4): 57-64.
[5] 王晖, 黄昕, 金国龙. 酸性腐蚀下混凝土试件物理力学性能演化规律研究[J]. 隧道与地下工程灾害防治, 0, (): 1-9.
[6] 韩桂武, 郭书太, 周锐. 煤矿巷道储油技术体系研究及应用[J]. 隧道与地下工程灾害防治, 0, (): 1-.
[7] 王建圣, 蒋志斌, 李丽超. 隧道岩体贯通节理面注浆加固力学响应特征[J]. 隧道与地下工程灾害防治, 2023, 5(2): 80-88.
[8] 李荣建, 李浩泽, 白维仕, 王磊, 张瑾. 潜在滑动面对隧道衬砌承载特性影响的模型试验研究[J]. 隧道与地下工程灾害防治, 2021, 3(4): 1-8.
[9] 潘鹏志, 梅万全. 基于CASRock的工程岩体动力响应分析方法、软件与应用[J]. 隧道与地下工程灾害防治, 2021, 3(3): 1-10.
[10] 刘润,黄旋智,袁宇,马鹏程. 土体弱化对海上风电单桩基础的影响研究[J]. 隧道与地下工程灾害防治, 2019, 1(4): 56-63.
[11] 赵志宏, 郭铁成, 林涛, 陈思聪. 考虑粗糙度影响的裂隙岩体开挖损伤区分布规律[J]. 隧道与地下工程灾害防治, 2019, 1(3): 77-86.
[12] 庄海洋, 付继赛, 朱明轩, 陈苏, 陈国兴. 柱顶设置滑移支座时地铁地下车站结构抗震性能分析[J]. 隧道与地下工程灾害防治, 2019, 1(3): 57-67.
[13] 蔡国军, 刘路路, 龚申, 刘松玉. 基于CPTU测试的海相软土刚性桩复合地基承载特性研究[J]. 隧道与地下工程灾害防治, 2019, 1(3): 46-56.
[14] 魏纲,黄时雨,蒋丞武,虞兴福,王新泉. 上软下硬地层盾构工作井开挖受力与变形监测分析[J]. 隧道与地下工程灾害防治, 2020, 2(4): 29-36.
[15] 闫治国, 王紫锐, 沈奕, 刘康. 碳氢曲线下大直径盾构隧道结构热力特性[J]. 隧道与地下工程灾害防治, 2024, 6(2): 25-36.
[1] ZHANG Ning, HUANG Xinjie, WANG Chuan, XU Bin, ZHANG Jiancheng, ZHANG Bo. Experimental and numerical simulation of high-pressure water jet cutting concrete[J]. Hazard Control in Tunnelling and Underground Engineering, 2023, 5(4): 47 -56 .
[2] WANG Lichuan , HE Weiguo, ZHANG Junru , WU Hongbin , JIANG Xinqiang , ZHANG Huijian , WANG Wen , HUANG Linxiang. Application of the steel pipe pile arch cover method in large-span underground metro stations in weak and fragmented rock strata[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -14 .
[3] Gou Xiaojun, Zhao Jinquan, Ji Wei, Hua Xiaoming, fan zhanfeng. Numerical simulation of radar characteristics of adverse geological structures in tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -19 .
[4] WANG Dongwei, HE Weiguo, DAI Xin, TIAN Feng, CHEN Yang. Exploration of rescue evacuation and ventilation technology for deep buried combined construction method subsea railway tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -12 .
[5] LI Lianran, REN Zhouhong, WANG Bin, ZHANG Quan, HUANG Hao, LIU Jijin, XU Haoyu, GUO Qian. Inverse wavefield transform method for opposing coils transient electromagnetic data and its application in ahead prospecting in the  lead-zinc mine at Huize[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -20 .
[6] WEI Songyuan, MA Jingyi, PENG Zhenhua, LIU Jianli, LI Wei. Reliability analysis of surrounding rocks stability of underground water-sealed caverns[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -3 .
[7] WANG Dongwei, HE Weiguo, DAI Xin, TIAN Feng, CHEN Yang. Exploration of rescue evacuation and ventilation technology for deep buried combined construction method subsea railway tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2025, 7(1): 1 -10 .
[8] XIAO Peiwei, YANG Xingguo, QIAN Hongjian, WANG Haofan, LI Biao, XU Nuwen. The best supporting time of hydraulic tunnels based on multiple monitoring information[J]. Hazard Control in Tunnelling and Underground Engineering, 2025, 7(1): 11 -21 .
[9] DING Jianqi, WANG Chencheng, ZHU Xiangshan, ZHANG Xiang, FU Gang, XU Jingmin. Influence mechanism of large diameter tunnel construction on adjacent buildings[J]. Hazard Control in Tunnelling and Underground Engineering, 2025, 7(1): 22 -34 .
[10] WU Jiangtao, LI Yingjie. The lightweight object detection algorithm for obstacles in tunnel construction environments[J]. Hazard Control in Tunnelling and Underground Engineering, 2025, 7(1): 48 -56 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn