Please wait a minute...
 
隧道与地下工程灾害防治  2019, Vol. 1 Issue (3): 57-67    
  本期目录 | 过刊浏览 | 高级检索 |
柱顶设置滑移支座时地铁地下车站结构抗震性能分析
庄海洋1,2, 付继赛1, 朱明轩1, 陈苏3, 陈国兴1
1. 南京工业大学岩土工程研究所,江苏 南京 210009; 2. 华东交通大学土木建筑学院,江西 南昌 330013;
3. 中国地震局地球物理研究所,北京 10012
Seismic performance of underground subway station with elastic slipping bearing fixed on the top of columns
ZHUANG Haiyang1,2, FU Jisai1, ZHU Mingxuan1, CHEN Su3, CHEN Guoxing1
1. Institute of Geotechnical Engineering, Nanjing Tech University, Nanjing 210009, Jiangsu, China;
2. School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang 330013, Jiangxi, China;
3. Institute of Geophysics, China Earthquake Administration, Beijing 100124, China
下载:  PDF (11101KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用在中柱顶端设置弹性滑移支座的方法,建立土-地下结构静动力耦合非线性相互作用的整体二维有限元计算模型,分析弹性滑移支座对地铁地下车站结构的侧移反应和地震损伤等结构地震反应特征的影响规律。结果表明:弹性滑移支座能够有效地减轻中柱及中板的地震损伤程度,使得中柱在地震中完全处于受压状态,能够有效地提高车站结构的整体抗震性能。滑移支座减弱了车站结构的抗侧移刚度和楼板的平面整体抗弯曲刚度,明显增大了地下车站结构的地震侧向位移反应幅值;因中柱改变了地铁地下车站结构的动力反应变形特征,使得车站结构顶底板与侧墙连接部位的结构地震损伤明显加重。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
庄海洋
付继赛
朱明轩
陈苏
陈国兴
关键词:  地铁地下车站结构  弹性滑移支座  减震性能  地震破坏  数值模拟    
Abstract: The elastic sliding isolation bearings were fixed at the top of the middle columns, a two-dimensional finite element model for the static-dynamic coupling interaction of soil-underground structure was established, and the seismic response of underground subway station, such as the lateral deformation, stress responses and the seismic damage were analyzed. It showed that the elastic sliding bearings fixed on the top of columns could effectively mitigate the seismic damage of the middle columns and the middle plate and keep middle columns completely under compress condition during the earthquake. As a result, it could improve the overall seismic performance of the underground station structure due to the important role of middle columns in the seismic resistance of underground subway station. However, the elastic sliding bearings fixed on the top of columns could also weaken the anti-lateral rigidity of the underground station structure and the plane buckling rigidity of the plates, which significantly amplified the lateral deformation response of the underground station structure. Meanwhile, middle columns changed the dynamic deformation mode of the underground station structure, which obviously aggravated the seismic damages of the top and bottom plates close to the side wall of the underground station structure.
Key words:  structure of underground subway station    elastic sliding bearing    aseismic performance    seismic damage    numerical simulation
收稿日期:  2019-05-17                出版日期:  2019-09-20      发布日期:  2019-11-13      期的出版日期:  2019-09-20
中图分类号:  U43  
基金资助: 国家自然科学基金面上资助项目(51778290,51508526);江苏省高校自然科学基金重大资助项目(16KJA560001)
作者简介:  庄海洋(1978— ),男,江苏宿迁人,博士,教授,硕士生导师,主要研究方向为土-结构动力相互作用等.E-mail:zhuang7802@163.com
引用本文:    
庄海洋, 付继赛, 朱明轩, 陈苏, 陈国兴. 柱顶设置滑移支座时地铁地下车站结构抗震性能分析[J]. 隧道与地下工程灾害防治, 2019, 1(3): 57-67.
ZHUANG Haiyang, FU Jisai, ZHU Mingxuan, CHEN Su, CHEN Guoxing. Seismic performance of underground subway station with elastic slipping bearing fixed on the top of columns. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(3): 57-67.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2019/V1/I3/57
[1] 庄海洋,程绍革,陈国兴. 阪神地震中大开地铁车站震害机制数值仿真分析[J]. 岩土力学,2008,29(1):245-250. ZHUANG Haiyang, CHENG Shaoge, CHEN Guoxing. Numerical simulation and analysis of earthquake damages of Dakai metro station caused by Kobe earthquake[J]. Rock and Soil Mechanics, 2008, 29(1):245-250.
[2] 杜修力, 康凯丽, 许紫刚, 等. 地下结构地震反应的主要特征及规律[J]. 土木工程学报, 2018,51(7): 11-21. DU Xiuli, KANG Kaili, XU Zigang,et al. Main characteristics and rules of seismic response for underground structures[J]. China Civil Engineering Journal, 2018, 51(7): 11-21.
[3] LI Wenting, CHEN Qingjun. Seismic performance and failure mechanism of a subway station based on nonlinear finite element analysis[J]. KSCE Journal of Civil Engineering, 2018, 22(2):765-776.
[4] CHEN Zhiyi, LIU Zhiqian. Effects of central column aspect ratio on seismic performances of subway station structures [J]. Advances in Structural Engineering, 2018, 21(1): 14-29.
[5] 还毅,方秦,柳锦春,等.提高地铁车站结构抗震能力的理论及数值分析[J].振动与冲击,2011,30(3):252-257. HUAN Yi, FANG Qin, LIU Jinchun, et al. Theoretical and numerical investigations on enhancement of aseismic capability of metro stations[J]. Journal of Vibration and Shock, 2011, 30(3):252-257.
[6] MA Chao, LU Dechun, DU Xiuli. Seismic performance upgrading for underground structures by introducing sliding isolation bearings[J]. Tunnelling and Underground Space Technology, 2018, 74:1-9.
[7] CHEN Zhiyi, CHEN Wei, BIAN Guoqiang. Seismic performance upgrading for underground structures by introducing shear panel dampers [J]. Advance in Structure Engineering, 2014, 17(9): 1343-1357.
[8] ZHUANG Haiyang, CHEN Guoxing. A viscous-plastic model for soft soil under cyclic loadings[C] // Geotechnical Special Publication of ASCE, Soil and Rock Behavior and Modeling Proceedings of the Geo-Shanghai Conference. [S.l.] :[s.n.] , 2006, 150: 343-350.
[9] ZHUANG Haiyang, WANG Rui, SHI Peixin, et al. Seismic response and damage analysis of underground structures considering the effect of concrete diaphragm wall[J]. Soil Dynamics and Earthquake Engineering, 2019, 116: 278-288.
[10] LEE J, FENVES G L. Plastic-damage model for cyclic loading of concrete structures[J]. Journal of Engineering Mechanics, 1998(4): 892-900.
[11] LUBLINER J, OLIVER J, OLLER S, et al. A plastic-damage model for concrete[J]. International Journal of Solids and Structures, 1989, 25(3): 299-326.
[12] 王璐, 王曙光, 欧谨, 等. 弹性滑移支座力学性能的试验研究[J]. 防灾减灾工程学报, 2010, 30(1):77-82. WANG Lu, WANG Shuguang, OU Jin, et al. Experimental study on mechanical behavior of an elastic sliding bearing[J]. Journal of Disaster Prevention & Mitigation Engineering, 2010, 30(1):77-82.
[13] 楼梦麟,王文剑,朱彤,等.土-结构体系振动台模型试验中土层边界影响问题[J]. 地震工程与工程振动, 2000, 20(2): 30-36. LOU Menglin, WANG Wenjian, ZHU Tong, et al. Soil lateral boundary effect in shaking table model test of soil-structure system[J]. Earthquake Engineering and Engineering Dynamics, 2000, 20(2): 30-36.
[14] British Standards Institution. Code of practice for temporary works procedures and the permissible stress design of false work:BS 5975:2008+A1:2011. [S.l.] : BSI. 2008.
[15] 程华群, 刘伟庆, 王曙光. 弹性滑移支座在高层隔震建筑中的应用研究[J]. 工程抗震与加固改造,2007(3):48-53. CHENG Huaqun, LIU Weiqing, WANG Shuguang. Application study on elastic sliding bearings in isolated high-rise building [J]. Earthquake Resistant Engineering and Retrofitting, 2007(3):48-53.
[16] 庄海洋, 吴祥祖, 陈国兴. 考虑初始静应力状态的土-地下结构非线性静、动力耦合作用研究[J]. 岩石力学与工程学报, 2011, 30(增刊1): 3112-3119. ZHUANG Haiyang, WU Xiangzu, CHEN Guoxin. Study of nonlinear static and dynamic coupling interaction of soil-underground structure considering initial static stress[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(Suppl.1): 3112-3119.
[1] 蔡国军, 刘路路, 龚申, 刘松玉. 基于CPTU测试的海相软土刚性桩复合地基承载特性研究[J]. 隧道与地下工程灾害防治, 2019, 1(3): 46-56.
[2] 温法庆. 土压平衡盾构穿越浅基础拉杆拱桥施工沉降控制技术研究[J]. 隧道与地下工程灾害防治, 2019, 1(2): 114-123.
[3] 徐长节,朱怀龙,龙莉波,蒋亚龙,胡琦. 深基坑隔离桩对坑外既有隧道保护效果分析[J]. 隧道与地下工程灾害防治, 2019, 1(1): 119-126.
[1] QIAN Qihu. Scientific use of the urban underground space to construction the harmonious livable and beautiful city[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 1 -7 .
[2] WANG Zhechao, LI Wei, LIU Jie, GUO Jiafan, ZHANG Yupeng. A review on state-of-the-art of underground gas storage and causes of typical accidents[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -10 .
[3] LIU Ning, ZHANG Chunsheng, ZHANG Chuanqing, CHU Weijiang, CHEN Pingzhi, . Analysis on lining structure safety of large hydraulic tunnel in deep-buried soft rock[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -8 .
[4] GONG Qiuming, WU Fan, YIN Lijun. Study on the rock mixed ground under disc cutter by linear cutting tests[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -11 .
[5] YAN Baoxu, ZHU Wancheng, HOU Chen. Theoretical analysis of maximum exposure height of the backfill when mining underground adjacent stope[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -11 .
[6] FU Helin, HUANG Zhen, WANG Hui, ZHANG Jiabing, SHI Yue. Accident analysis and management of metro safety[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -12 .
[7] JIAO Yuyong, ZHANG Weishe, OU Guangzhao, ZOU Junpeng, CHEN Guanghui. Review of the evolution and mitigation of the water-inrush disaster in drilling-and-blasting excavated deep-buried tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 36 -46 .
[8] HONG Kairong. Study on rock breaking and wear of tbm hob in high-strength high-abrasion stratum[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 76 -85 .
[9] RONG Xiaoli, WEN Zhu, HAO Yiqing, LU Hao, XIONG Ziming. Risk margin model of underground engineering based on possibility theory[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -10 .
[10] JING Hongwen, YU Liyuan, SU Haijian, GU jincai, Yin Qian. Development and application of catastrophic experiment system for water inrush in surrounding rock of deep tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 102 -110 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn