Please wait a minute...
 
隧道与地下工程灾害防治  2019, Vol. 1 Issue (3): 68-76    
  本期目录 | 过刊浏览 | 高级检索 |
不同微震震源机制下地下硐室围岩响应及支护建议
董陇军,王钧晖,马举
中南大学资源与安全工程学院, 湖南 长沙 410083
Response and support suggestions of surrounding rock of underground cavern under different microseismic source mechanism
DONG Longjun, WANG Junhui, MA Ju
School of Resources and Safety Engineering, Central South University, Changsha 410083, Hunan, China
下载:  PDF (6795KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着铁路、水利、矿山等工程的发展,越来越多的硐室需要在深部开挖。工程爆破开挖和断层滑移等动力荷载严重影响着地下硐室围岩的稳定性。利用有限差分软件FLAC3D,对地下硐室在爆破和断层滑移作用下的围岩稳定性进行模拟,引入地震动峰值速度(peak ground velocity,PGV),利用萨道夫斯基公式和McGarr公式拟合得到不同震源机制下围岩PGV的数学关系式。结果表明,在爆破荷载作用下,地下硐室与震源间的距离对硐室稳定性影响显著,萨道夫斯基变形公式可以很好的表征围岩体响应的PGV,但McGarr变形公式不适用;在断层滑移作用下,萨道夫斯基变形公式和McGarr变形公式拟合度低,滑移角度对硐室的稳定性影响更大。深部地下硐室支护应考虑震源的影响,如PGV等,对于断层滑移产生的震源需要考虑滑移角度对PGV的影响。以上结论为岩土工程地下硐室开挖及支护提供数据支撑与理论依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
董陇军
王钧晖
马举
关键词:  地下硐室  爆破  断层滑移  地震动峰值速度  支护    
Abstract: With the development of railway, water conservancy, mining and other projects, increasing caverns need to be excuvated in the deep. Dynaimic loads includying blasting excavation and fault-ship burst seriavsly affect the stability of surrounding rockmass of undergroud cavern. The finite difference software FLAC3D was used to simulate the surrounding rockmass stability of underground cavern under blasting and fault-slip burst conditions. The peak ground velocity(PGV)was used, and the mathematical relationship of the surrounding rock PGV under different focal mechanisms was obtained by fitting the Sadovs formula and the McGarrs formula. It was concluded that under the blasting load condition, the distance between the underground cavern and the source had a significant influence on the stability of the cavern. The Sadovs deformation formula could well characterize the PGV of the surrounding rockmass response, but the McGarrs deformation formula was not applicable. Under the condition of fault-slip, the Sadovs deformation formula and the McGarrs deformation formula did not have high goodness of fit, the slip angle had a greater influence on the stability of the cavern. Based on the above analysis, it was recommended that deep underground cavern support should consider the influence of the source, such as PGV. For the source of fault-slip, the influence of the slip angle on PGV should be considered. The above conclusions provide data support and technical basis for the excavation and support of geotechnical engineering underground cavern.
Key words:  underground cavern    blast    fault-slip    PGV    support
收稿日期:  2018-12-25                出版日期:  2019-09-20      发布日期:  2019-11-13      期的出版日期:  2019-09-20
中图分类号:  TD322  
基金资助: 国家自然科学基金资助项目(51774327,51822407);湖湘青年英才资助项目(2018RS3001);湖南省杰出青年基金资助项目(2018JJ1037)
作者简介:  董陇军(1984— ),男,甘肃陇西人,博士,教授,博士生导师,国家优秀青年基金获得者,主要研究方向为岩石力学、微震监测、安全工程等. E-mail:lj.dong@csu.edu.cn
引用本文:    
董陇军,王钧晖,马举. 不同微震震源机制下地下硐室围岩响应及支护建议[J]. 隧道与地下工程灾害防治, 2019, 1(3): 68-76.
DONG Longjun, WANG Junhui, MA Ju. Response and support suggestions of surrounding rock of underground cavern under different microseismic source mechanism. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(3): 68-76.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2019/V1/I3/68
[1] 杨小林,侯爱军,梁为民,等. 隧道掘进爆破的损伤机理与振动危害[J]. 煤炭学报, 2008, 33(4): 400-404. YANG Xiaolin, HOU Aijun, LIANG Weimin, et al. Damage mechanism and vibration effects in tunnel blasting[J]. Journal of China Coal Society, 2008, 33(4): 400-404.
[2] 王薇,王连捷,王红才,等. 青藏铁路昆仑山隧道稳定性分析[J]. 地球学报, 2002, 23(4): 359-362. WANG Wei, WANG Lianjie, WANG Hongcai, et al. Stability analysis of Kunlun Mountain Tunnel for Qinghai-Tibet Railway[J]. Acta Geoscientia Sinica, 2002, 23(4): 359-362.
[3] 陈国庆, 冯夏庭, 周辉, 等. 锦屏二级水电站引水隧洞长期稳定性数值分析[J]. 岩土力学, 2007(增刊1): 417-422. CHEN Guoqing, FENG Xiating, Zhou Hui, et al. Numerical analysis of the long-term stability of the seepage tunnel in Jinping II Hydropower Station[J]. Rock and Soil Mechanics, 2007(Suppl.1): 417-422.
[4] 董陇军,李夕兵,唐礼忠,等. 无需预先测速的微震震源定位的数学形式及震源参数确定[J]. 岩石力学与工程学报,2011,30(10): 2057-2067. DONG Longjun, LI Xibing, TANG Lizhong, et al. Mathematical functions and parameters for microseismic source location without pre-measuring speed[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(10): 2057-2067.
[5] 董陇军,孙道元,李夕兵,等. 微震与爆破事件统计识别方法及工程应用[J]. 岩石力学与工程学报, 35(7): 1423-1433. DONG Longjun, SUN Daoyuan, LI Xibing, et al. A statistical method to identify blasts and microseismic events and its engineering application[J]. Chinese Journal of Rock Mechanics and Engineering, 35(7): 1423-1433.
[6] DONG L J, WESSELOO J, POTVIN Y, et al. Discrimination of mine seismic events and blasts using the fisher classifier,naïve bayesian classifier and logistic regression[J]. Rock Mechanics and Rock Engineering, 2015, 48(11): 1-29.
[7] DONG L J, SUN D Y, LI X B, et al. Interval non-probabilistic reliability of surrounding jointed rockmass considering microseismic loads in mining tunnels[J]. Tunnelling and Underground Space Technology, 2018, 81: 326-335.
[8] DONG L J, WANG J H, LI X B, et al. Dynamic stability analysis of rockmass: a review [J]. Advances in Civil Engineering, 2018(4): 1-22.
[9] LI X B, LI C J, CAO W Z, et al. Dynamic stress concentration and energy evolution of deep-buried tunnels under blasting loads[J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 104: 131-146.
[10] YANG J H, LU W B, HU Y G, et al. Numerical simulation of rock mass damage evolution during deep-buried tunnel excavation by drill and blast[J]. Rock Mechanics and Rock Engineering, 2015, 48(5): 2045-2059.
[11] LI X P, HUANG J H, LUO Y, et al. Numerical simulation of blast vibration and crack forming effect of rock-anchored beam excavation in deep underground caverns[J]. Shock and Vibration, 2017: 1-13.
[12] ZHENG X, HUA J, ZHANG N, et al. Simulation of the load evolution of an anchoring system under a blasting impulse load using FLAC3D[J]. Shock and Vibration, 2015: 1-8.
[13] MORTAZAVI A, ALAVI F T.A numerical study of the behavior of fully grouted rockbolts under dynamic loading[J]. Soil Dynamics and Earthquake Engineering, 2013, 54: 66-72.
[14] SJÖBERG J, PERMAN F, QUINTEIRO C, et al. Numerical analysis of alternative mining sequences to minimise potential for fault slip rockbursting[J]. Mining Technology, 2012, 121(4): 226-235.
[15] MA J, DONG L J, ZHAO G Y, et al. Qualitative method and case study for ground vibration of tunnels induced by fault-slip in underground mine[J]. Rock Mechanics and Rock Engineering, 2018: 1-15.
[16] 陈光辉, 李夕兵, 张平, 等. 基于改进Haskell模型的断层滑移型岩爆震源模拟研究[J]. 中国安全科学学报, 2016, 26(8):122-127. CHEN Guanghui, LI Xibing, ZHANG Ping, et al. Simulation of fault slip rockburst seismic source based on improved Haskell model[J]. China Safety Science Journal, 2016, 26(8):122-127.
[17] 陈光辉, 李夕兵, 董陇军, 等. 基于震源机制的断层滑移型岩爆岩体震动响应研究[J]. 中国安全科学学报, 2016, 26(11): 121-126. CHEN Guanghui, LI Xibing, DONG Longjun, et al. Dynamic response of rockmass under fault-slip rockburst based on focal mechanism[J]. China Safety Science Journal, 2016, 26(11): 121-126.
[18] 陈光辉, 李夕兵, 董陇军. 考虑断层滑移应力波辐射特征的巷道支护参数优化研究[J]. 采矿与安全工程学报, 2017, 34(4): 715-722. CHEN Guanghui, LI Xibing, DONG Longjun. Optimization of tunnel support parameters with consideration of seismic wave radiation pattern in the fault-slip burst[J]. Journal of Mining and Safety Engineering, 2017, 34(4): 715-722.
[19] 王志荣,李潇旋,陈玲霞. 基于断层带瓦斯突出的巷道冲击波对围岩的三维动力效应[J]. 岩石力学与工程学报,2015, 34(9):1796-1804. WANG Zhirong, LI Xiaoxuan, CHEN Lingxia.Three-dimensional dynamic effect of gas burst shock wave on roadway surrounding rock based on fault damage[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(9):1796-1804.
[20] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会. 爆破安全规程:GB6722—2014[S]. 北京:中国标准出版社,2015.
[21] MCGARR A, GREEN RW, SPOTTISWOODE S M. Strong ground motion of mine tremors: some implications for near-source ground motion parameters[J]. Bulletin of the Seismological Society of America, 1981, 71(1): 295-319.
[22] AKI K, RICHARDS P G. Quantitative seismology theory and methods[M]. San Francisco, USA: Freeman W H, 1980.
[23] POTVIN Y, WESSELOO J. Towards an understanding of dynamic demand on ground support[J]. Journal of the Southern African Institute of Mining and Metallurgy, 2013, 113(12): 913-922.
[1] 董陇军, 王钧晖, 马举. 不同微震震源机制下地下硐室围岩响应及支护建议[J]. 隧道与地下工程灾害防治, 0, (): 68-76.
[1] QIAN Qihu. Scientific use of the urban underground space to construction the harmonious livable and beautiful city[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 1 -7 .
[2] WANG Zhechao, LI Wei, LIU Jie, GUO Jiafan, ZHANG Yupeng. A review on state-of-the-art of underground gas storage and causes of typical accidents[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -10 .
[3] LIU Ning, ZHANG Chunsheng, ZHANG Chuanqing, CHU Weijiang, CHEN Pingzhi, . Analysis on lining structure safety of large hydraulic tunnel in deep-buried soft rock[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -8 .
[4] GONG Qiuming, WU Fan, YIN Lijun. Study on the rock mixed ground under disc cutter by linear cutting tests[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -11 .
[5] YAN Baoxu, ZHU Wancheng, HOU Chen. Theoretical analysis of maximum exposure height of the backfill when mining underground adjacent stope[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -11 .
[6] FU Helin, HUANG Zhen, WANG Hui, ZHANG Jiabing, SHI Yue. Accident analysis and management of metro safety[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -12 .
[7] JIAO Yuyong, ZHANG Weishe, OU Guangzhao, ZOU Junpeng, CHEN Guanghui. Review of the evolution and mitigation of the water-inrush disaster in drilling-and-blasting excavated deep-buried tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 36 -46 .
[8] HONG Kairong. Study on rock breaking and wear of tbm hob in high-strength high-abrasion stratum[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 76 -85 .
[9] RONG Xiaoli, WEN Zhu, HAO Yiqing, LU Hao, XIONG Ziming. Risk margin model of underground engineering based on possibility theory[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -10 .
[10] JING Hongwen, YU Liyuan, SU Haijian, GU jincai, Yin Qian. Development and application of catastrophic experiment system for water inrush in surrounding rock of deep tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 102 -110 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn