Please wait a minute...
 
隧道与地下工程灾害防治  2022, Vol. 4 Issue (1): 48-54    DOI: 10.19952/j.cnki.2096-5052.2022.01.06
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
季节性冻土环境下有轨电车运营期轨道动力响应
张中杰1,李心熙2,吴航1,陈加核1,禹海涛2*
(1.上海市城市建设设计研究总院(集团)有限公司, 上海 200125;2.同济大学地下建筑与工程系, 上海 200092
Dynamic responses of tram track during operation period in seasonal frozen soil area
ZHANG Zhongjie1, LI Xinxi2, WU Hang1, CHEN Jiahe1, YU Haitao2*
1. Shanghai Urban Construction Design &Research Institute, Shanghai 200125, China; 2. Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China
下载:  PDF (3917KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 为保障冻胀土地基条件下有轨电车运营期安全,需研究列车移动荷载作用下季节性冻土环境下有轨电车轨道的动力响应。依托张家口崇礼奥运赛区有轨电车项目,选取典型黑色黏土为代表性冻胀土体,重点测试了温度变化时该土体的水力特性及力学行为;将有轨电车轨道简化为无限长均质直梁,将地层考虑为Pasternak双参数地基,基于Euler-Bernoulli梁理论推导列车荷载作用下轨道动力响应的解析表达式,通过参数化分析研究土体冻融行为对轨道动力响应的影响规律。结果表明:季节性冻融行为会对有轨电车动力响应产生影响,且随着地基土温度的升高,土层动刚度系数会逐渐降低,轨道的动力响应趋于放大。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张中杰
李心熙
吴航
陈加核
禹海涛
关键词:  季节性冻土  列车荷载  轨道响应  解析解    
Abstract: Attention should be paid to the dynamic response of railway track in seasonally frozen environment under moving tram loads in order to ensure the safety of tram during operation period. The black clay in Zhangjiakou was selected as the typical frozen soil sample, and the hydraulic and mechanical properties of the sample were tested under the environment of temperature variation. The long lined track of the tram was assumed as an infinite homogeneous beam resting on a Pasternak foundation, and the analytical solution for long lined tracks subjected to moving traffic loads was obtained based on the beam-elastic foundation theory. Parametric analyses were performed to investigate the influence of the freeze-thaw behaviors of soil on the dynamic response of railway subgrade. Results showed that the dynamic response of subgrade was affected by the freeze-thaw behaviors of soil, and the dynamic stiffness of foundation would decrease with the increase of temperature, and thus contributed to the amplification of dynamic responses of the track.
Key words:  seasonal frozen soil    traffic load    track response    analytical solution
收稿日期:  2021-10-21      修回日期:  2022-01-10      发布日期:  2022-03-20     
中图分类号:  TU92  
基金资助: 国家自然科学基金资助项目(41922059?42177134)
通讯作者:  禹海涛(1983— ),男,河南泌阳人,博士,教授,博士生导师,国家优秀青年科学基金项目获得者,主要研究方向为地下结构防灾减灾.    E-mail:  yuhaitao@tongji.edu.cn
作者简介:  张中杰(1976— ),男,上海人,教授级高级工程师,主要研究方向为城市轨道交通,地下空间和深基坑的设计与咨询. E-mail:zhangzhongjie@sucdri.com.
引用本文:    
张中杰, 李心熙, 吴航, 陈加核, 禹海涛. 季节性冻土环境下有轨电车运营期轨道动力响应[J]. 隧道与地下工程灾害防治, 2022, 4(1): 48-54.
ZHANG Zhongjie, LI Xinxi, WU Hang, CHEN Jiahe, YU Haitao. Dynamic responses of tram track during operation period in seasonal frozen soil area. Hazard Control in Tunnelling and Underground Engineering, 2022, 4(1): 48-54.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2022/V4/I1/48
[1] 章华金.现代有轨电车与快速公交BRT的比较及其在我国的应用[J].交通标准化,2013,41(11):84-87. ZHANG Huajin. Comparison of modern tramways with BRT and application in China[J]. Transportation Standardization, 2013, 41(11): 84-87.
[2] 杜飞. 有轨电车引起的环境振动实测及数值模拟研究[D].大连:大连海事大学,2019. DU Fei. Measurement and numerical simulation of environmental vibration caused by tram[D]. Dalian: Dalian Maritime University, 2019.
[3] PEDRO A C, RUI C, ANTÓNIO S C, et al. Influence of soil non-linearity on the dynamic response of high-speed railway tracks[J]. Soil Dynamics and Earthquake Engineering, 2010, 30(4):221-235.
[4] 曹艳梅,夏禾,陈建国.运行列车引起地面振动的理论模型及振动特性分析[J].振动工程学报,2009,22(6):589-596. CAO Yanmei, XIA He, CHEN Jianguo. Theoretical model and characteristic analysis of moving train induced ground vibration[J]. Journal of Vibration Engineering, 2009, 22(6): 589-596.
[5] 翟婉明,韩海燕.高速列车运行于软土地基线路引起的地面振动研究[J].中国科学(技术科学),2012,42(10):1148-1156.
[6] CORREIA Dos Santos N, BARBOSA J, CALÇADA R, et al. Track-ground vibrations induced by railway traffic: experimental validation of a 3D numerical model[J]. Soil Dynamics and Earthquake Engineering, 2017, 97:324-344.
[7] 徐善辉,郭建,李培培,等.京津高铁列车运行引起的地表振动观测与分析[J].地球物理学进展,2017,32(1):421-425. XU Shanhui, GUO Jian, LI Peipei, et al. Observation and analysis of ground vibrations caused by the Beijing-Tianjin high-speed train running[J]. Progress in Geophysics, 2017, 32(1): 421-425.
[8] WINKLER E. Die lehre von elastizitat and festigkeit[M]. Prague, Czechoslovakia: Dominicus, 1867.
[9] TIMOSHENKO S P. Method of analysis of statical and dynamical stresses in rail[C] //2th International Congress of Applied Mechanics. Zurich, Switzerland: [s.n.] , 1927.
[10] MACDONALD A, COXON S. Towards a more accessible tram system in Melbourne-Challenges for infrastructure design[C] //ATRF 2011-34th Australasian Transport Research Forum. Adelaide, Australia: Elsevier B.V., 2011.
[11] HUNG H H, CHEN G H, YANG Y B. Effect of railway roughness on soil vibrations due to moving trains by 2.5D finite/infinite element approach[J]. Engineering Structures, 2013, 57:254-266.
[12] 黄强,黄宏伟,张锋,等.饱和软土层地铁列车运行引起的环境振动研究[J].岩土力学,2015,36(增刊1):563-567. HUANG Qiang, HUANG Hongwei, ZHANG Feng, et al. Research on environmental vibration response of soft saturated soil due to moving metro train[J]. Rock and Soil Mechanics, 2015, 36(Suppl.1): 563-567.
[13] 徐学祖, 王家澄, 张立新. 冻土物理学[M]. 北京: 科学出版社, 2001.
[14] 张泽,马巍,齐吉琳.冻融循环作用下土体结构演化规律及其工程性质改变机理[J].吉林大学学报(地球科学版), 2013, 43(6): 1904-1914. ZHANG Ze, MA Wei, QI Jilin. Structure evolution and mechanism of engineering properties change of soils under effect of freeze-thaw cycle[J]. Journal of Jilin University(Earth Science Edition), 2013, 43(6): 1904-1914.
[15] 郑郧,马巍,邴慧.冻融循环对土结构性影响的试验研究及影响机制分析[J].岩土力学,2015,36(5):1282-1287. ZHENG Yun, MA Wei, BING Hui. Impact of freezing and thawing cycles on structure of soils and its mechanism analysis by laboratory testing[J]. Rock and Soil Mechanics, 2015, 36(5): 1282-1287.
[16] CLOUGH R W, PENZIEN J. Dynamics of structures[M]. Berkeley, USA: Computers and Structures, Inc., 2003.
[17] YU H, CAI C, YUAN Y, et al. Analytical solutions for Euler-Bernoulli Beam on Pasternak foundation subjected to arbitrary dynamic loads[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2017, 41(8):1125-1137.
[18] DIETEMAN H A, METRIKINE A. Critical velocities of a harmonic load moving uniformly along an elastic layer[J]. Journal of Applied Mechanics, 1997, 64(3):596-600.
[19] SUN L. An explicit representation of steady state response of a beam on an elastic foundation to moving harmonic line loads[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2003, 27(1):69-84.
[20] 翟杰群. 地铁振动传播的现场测试与数值分析[D].上海:同济大学, 2007. ZHAI Jiequn. Test and analysis of vibration propagation caused by the subway train[D]. Shanghai: Tongji University, 2007.
[21] ST JOHN C M, ZAHRAH T F. Aseismic design of underground structures[J]. Tunnelling and Underground Space Technology, 1987, 2(2):165-197.
[1] 禹海涛,王祺,刘涛. 均质地层长隧道纵向地震响应解析解[J]. 隧道与地下工程灾害防治, 2020, 2(1): 34-41.
[1] QIAN Qihu. Scientific use of the urban underground space to construction the harmonious livable and beautiful city[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 1 -7 .
[2] DENG Mingjiang, LIU Bin. Challenges, countermeasures and development direction of geological forward-prospecting for TBM cluster tunneling in super-long tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 8 -19 .
[3] DING Xiuli, ZHANG Yuting, ZHANG Chuanjian, YAN Tianyou, HUANG Shuling. Review on countermeasures and their adaptability evaluation to tunnels crossing active faults[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 20 -35 .
[4] JIAO Yuyong, ZHANG Weishe, OU Guangzhao, ZOU Junpeng, CHEN Guanghui. Review of the evolution and mitigation of the water-inrush disaster in drilling-and-blasting excavated deep-buried tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 36 -46 .
[5] ZHANG Qingsong, ZHANG Lianzhen, LI Peng, FENG Xiao. New progress in grouting reinforcement theory of water-rich soft stratum in underground engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 47 -57 .
[6] XIA Kaiwen, XU Ying, CHEN Rong. Dynamic tests of rocks subjected to simulated deep underground environments[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 58 -75 .
[7] HONG Kairong. Study on rock breaking and wear of TBM hob in high-strength high-abrasion stratum[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 76 -85 .
[8] TAN Zhongsheng. Application experimental study of high-strength lattice girders with heat treatment in tunnel engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 86 -92 .
[9] CHEN Jianxun, LUO Yanbin. The stability of structure and its control technology for lager-span loess tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 93 -101 .
[10] JING Hongwen, YU Liyuan, SU Haijian, GU Jincai, YIN Qian. Development and application of catastrophic experiment system for water inrush in surrounding rock of deep tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 102 -110 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn