Please wait a minute...
 
隧道与地下工程灾害防治  2023, Vol. 5 Issue (2): 1-23    DOI: 10.19952/j.cnki.2096-5052.2023.02.01
  前沿综述 本期目录 | 过刊浏览 | 高级检索 |
钻孔卸压防治岩爆机理的试验研究进展与展望
宫凤强,何志超
东南大学土木工程学院, 江苏 南京 211189
Progress and prospect of experimental research on the mechanism of rockburst prevention and control by drilling pressure relief
GONG Fengqiang, HE Zhichao
School of Civil Engineering, Southeast University, Nanjing 211189, Jiangsu, China
下载:  PDF (32718KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 基于宏观(力学行为特征、破坏特征、能量演化)和微观(裂纹演化)视角综述预制钻孔和高应力实时钻孔在解析钻孔卸压防治岩爆灾害机理方面的试验研究进展,阐述钻孔卸压防治岩爆灾害的合理性和有效性。理论研究、试验分析证实钻孔卸压是解除深部围岩高应力、高能量的关键技术,为应用钻孔卸压防治岩爆方案制定优化提供参考。高应力实时钻孔试验方法是一种更为科学的揭示钻孔卸压防治岩爆内在机理的新研究方法。根据岩爆诱发机理和当前多功能试验系统的技术条件,对解析钻孔卸压防治岩爆机理的试验研究提出6个发展方向:研发适配真三轴试验系统的高应力钻机试验设备;考虑扰动因素下的高应力实时钻孔卸压模拟试验;模拟深部隧洞(巷道)开挖后的实时钻孔卸压试验(“三维六面加载-单面卸载-实时钻孔卸压”试验);构建三维高应力实时钻孔卸压下围岩能量演化的解析模型;探究卸压钻孔的空间尺寸效应与围岩应力场及围岩内部能量耗散机制的关系;基于数值模拟软件建立大尺度高应力围岩的钻孔卸压防治岩爆的计算模型。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宫凤强
何志超
关键词:  岩爆  钻孔卸压  深埋隧洞  高应力  应变能演化    
Abstract: The paper reviewed the experimental research progress of prefabricated drilling and high stress real-time drilling in analyzing the mechanism of drilling pressure relief(DPR)for preventing rockburst disasters from the perspectives of macroscopic(mechanical behavior characteristics, failure characteristics, energy evolution)and microscopic(crack evolution), and elaborated on the rationality and effectiveness of DPR for preventing rockburst disasters. Theoretical research and experimental analysis had confirmed that DPR was a key technology for relieving high stress and high energy in deep surrounding rocks, providing a reference for optimizing the application of DPR to prevent rockburst. High stress real-time drilling test method was a more scientific new research method that revealed the internal mechanism of DPR to prevent rockburst. Based on this, six development directions had been proposed for the experimental research on the mechanism of rockburst induction and the current technical conditions of multifunctional testing systems to analyze the mechanism of DPR to prevent rockburst: developing high-stress drilling rig test equipment compatible with true triaxial test systems; considering disturbance factors in high-stress real-time DPR simulation tests; simulating real-time DPR test after excavation of deep tunnels(roadway)("3D six-sided loading-single-sided unloading-real-time DPR" test); constructing an analytical model for the energy evolution of surrounding rock under 3D high stress real-time DPR; exploring the relationship between the spatial size effect of pressure relief drilling and the stress field and internal energy dissipation mechanism of surrounding rock; establishing a computational model for rockburst prevention by DPR in large-scale high-stress surrounding rock based on numerical simulation software.
Key words:  rockburst    drilling pressure relief    deep tunnel    high stress    strain energy evolution
收稿日期:  2023-02-28      修回日期:  2023-05-12      发布日期:  2023-06-20     
中图分类号:  TD32  
  TU45  
基金资助: 国家自然科学基金资助项目(42077244,41877272);中央高校基本科研业务费专项资金资助项目(2242022k30054)
作者简介:  宫凤强(1979— ),男,山东临朐人,博士,教授,博士生导师,主要研究方向为岩爆、冲击地压等深部工程地质灾害发生机理,深部岩石动力学. E-mial:fengqiangg@126.com
引用本文:    
宫凤强, 何志超. 钻孔卸压防治岩爆机理的试验研究进展与展望[J]. 隧道与地下工程灾害防治, 2023, 5(2): 1-23.
GONG Fengqiang, HE Zhichao. Progress and prospect of experimental research on the mechanism of rockburst prevention and control by drilling pressure relief. Hazard Control in Tunnelling and Underground Engineering, 2023, 5(2): 1-23.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2023/V5/I2/1
[1] 李利平, 贾超, 孙子正, 等. 深部重大工程灾害监测与防控技术研究现状及发展趋势[J].中南大学学报(自然科学版), 2021, 52(8):2539-2556. LI Liping, JIA Chao, SUN Zizheng, et al. Research status and development trend of major engineering disaster prevention and control technology in deep underground[J]. Journal of Central South University(Science and Technology), 2021, 52(8): 2539-2556.
[2] 李术才, 王汉鹏, 钱七虎, 等.深部巷道围岩分区破裂化现象现场监测研究[J]. 岩石力学与工程学报, 2008, 27(8):1545-1553. LI Shucai, WANG Hanpeng, QIAN Qihu, et al. In-situ monitoring research on zonal disintegration of surrounding rock mass in deep mine roadways[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(8): 1545-1553.
[3] 李夕兵, 周健, 王少锋, 等. 深部固体资源开采评述与探索[J].中国有色金属学报, 2017, 27(6):1236-1262. LI Xibing, ZHOU Jian, WANG Shaofeng, et al. Review and practice of deep mining for solid mineral resources[J]. The Chinese Journal of Nonferrous Metals, 2017, 27(6):1236-1262.
[4] 谢和平, 高峰, 鞠杨. 深部岩体力学研究与探索[J].岩石力学与工程学报, 2015, 34(11):2161-2178. XIE Heping, GAO Feng, JU Yang. Research and development of rock mechanics in deep ground engineering[J].Chinese Journal of Rock Mechanics and Engineering, 2015, 34(11):2161-2178.
[5] 何满潮, 谢和平, 彭苏萍, 等. 深部开采岩体力学研究[J]. 岩石力学与工程学报, 2005, 24(16):2803-2813. HE Manchao, XIE Heping, PENG Suping, et al. Study on rock mechanics in deep mining engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(16):2803-2813.
[6] XIE H P, JU Y, GAO F, et al. Groundbreaking theoretical and technical conceptualization of fluidized mining of deep underground solid mineral resources[J]. Tunnelling and Underground Space Technology, 2017, 67:68-70.
[7] MENG F Z, ZHOU H, WANG Z Q, et al. Experimental study on the prediction of rockburst hazards induced by dynamic structural plane shearing in deeply buried hard rock tunnels[J]. International Journal of Rock Mechanics and Mining Sciences, 2016, 86:210-223.
[8] 张文东, 马天辉, 唐春安, 等. 锦屏二级水电站引水隧洞岩爆特征及微震监测规律研究[J]. 岩石力学与工程学报, 2014, 33(2):339-348. ZHANG Wendong, MA Tianhui, TANG Chun'an, et al. Research on characteristics of rockburst and rules of microseismic monitoring at diversion tunnels in Jinping II Hydropower Station[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(2):339-348.
[9] KENETI A, SAINSBURY B A. Review of published rockburst events and their contributing factors[J]. Engineering Geology, 2018, 246:361-373.
[10] JIANG Q, FENG X T, XIANG T B, et al. Rockburst characteristics and numerical simulation based on a new energy index: a case study of a tunnel at 2 500 m depth[J]. Bulletin of Engineering Geology and the Environment, 2010, 69:381-388.
[11] PANTHI K K. Evaluation of rock bursting phenomena in a tunnel in the Himalayas[J]. Bulletin of Engineering Geology and the Environment, 2012, 71(4): 761-769.
[12] FENG X T, PEI S F, JIANG Q, et al. Deep fracturing of the hard rock surrounding a large underground cavern subjected to high geostress: in situ observation and mechanism analysis[J]. Rock Mechanics and Rock Engineering, 2017, 50(8): 2155-2175.
[13] YANG J P, CHEN W Z, ZHAO W S, et al. Geohazards of tunnel excavation in interbedded layers under high in situ stress[J]. Engineering Geology, 2017, 230: 11-22.
[14] RANJITH P G, ZHAO J, JU M, et al. Opportunities and challenges in deep mining: a brief review[J]. Engineering, 2017, 3(4):546-551.
[15] CAI M, CHAMPAIGNE D, COULOMBE J G, et al. Development of two new rockbolts for safe and rapid tunneling in burst-prone ground[J]. Tunnelling and Underground Space Technology, 2019, 91:103010.
[16] WANG S M, ZHOU J, LI C Q, et al. Rockburst prediction in hard rock mines developing bagging and boosting tree-based ensemble techniques[J]. Journal of Central South University, 2021, 28(2): 527-542.
[17] 赵毅. TBM强岩爆掘进段小导洞超前应力释放施工技术[J]. 隧道与地下工程灾害防治,2022,4(1): 78-85. ZHAO Yi. Advance stress release construction technology of small pilot tunnel in TBM strong rock burst tunneling section[J].Hazard Control in Tunnelling and Underground Engineering, 2022, 4(1): 78-85.
[18] 马春驰, 陈柯竹, 李天斌,等.基于GDEM的应力-结构型岩爆数值模拟研究[J]. 隧道与地下工程灾害防治,2020,2(3): 85-94. MA Chunchi, CHEN Kezhu, LI Tianbin, et al. Numerical simulation of stress-structural rockburst based on GDEM software[J]. Hazard Control in Tunnelling and Underground Engineering, 2020, 2(3): 85-94.
[19] 吴世勇, 王鸽. 锦屏二级水电站深埋长隧洞群的建设和工程中的挑战性问题[J].岩石力学与工程学报, 2010, 29(11):2161-2171. WU Shiyong, WANG Ge. Challenge issues in construction and project of large-scale deep-buried tunnel group of Jinping II Hydropower Station[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(11):2161-2171.
[20] 冯夏庭, 陈炳瑞, 张传庆. 岩爆孕育过程的机制、预警与动态调控[M].北京:科学出版社, 2013.
[21] LI S J, FENG X T, LI Z, et al. In situ monitoring of rockburst nucleation and evolution in the deeply buried tunnels of Jinping II Hydropower Station[J]. Engineering Geology, 2012, 137: 85-96.
[22] ZHANG C Q, FENG X T, ZHOU H, et al. Case histories of four extremely intense rockbursts in deep tunnels[J]. Rock Mechanics and Rock Engineering, 2012, 45(3): 275-288.
[23] SU G S, CHEN Z Y, JU J W, et al. Influence of temperature on the strainburst characteristics of granite under true triaxial loading conditions[J]. Engineering Geology, 2017, 222:38-52.
[24] 唐泽林, 罗春, 张志强, 等.成兰铁路特长深埋隧道岩爆段应力特征[J]. 科学技术与工程, 2022, 22(3):1233-1242. TANG Zelin, LUO Chun, ZHANG Zhiqiang, et al. Stress characteristics of rockburst section of over-length and deep buried tunnel of Chenglan Railway[J]. Science Technology and Engineering, 2022, 22(3):1233-1242.
[25] 宫凤强, 潘俊锋, 江权. 岩爆和冲击地压的差异解析及深部工程地质灾害关键机理问题[J].工程地质学报,2021,29(4):933-961. GONG Fengqiang, PAN Junfeng, JIANG Quan. The difference analysis of rock burst and coal burst and key mechanisms of deep engineering geological hazards[J]. Journal of Engineering Geology, 2021, 29(4):933-961.
[26] 央视新闻客户端.记者探秘拉林铁路施工: 发生强岩爆时4吨台车被震跳[EB/QL].(2016-06-27)[2023-02-18]. http://m.news.cctv.com/2016/06/27/ARTIuGtWelMHjn6q1HimRJHV160627.shtml.
[27] 韩侃, 杨文斌, 陈贤丰, 等. 巴玉隧道施工中岩爆风险动态管控措施[J]. 铁道建筑, 2020, 60(6):65-68. HAN Kan, YANG Wenbin, CHEN Xianfeng, et al. Dynamic management control measures of rockburst risk in Bayu Tunnel construction[J]. Railway Engineering, 2020, 60(6):65-68.
[28] 李夕兵, 宫凤强, 王少锋, 等. 深部硬岩矿山岩爆的动静组合加载力学机制与动力判据[J]. 岩石力学与工程学报, 2019, 38(4):708-723. LI Xibing, GONG Fengqiang, WANG Shaofeng, et al.Coupled static-dynamic loading mechanical mechanism and dynamic criterion of rockburst in deep hard rock mines[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(4):708-723.
[29] 李江, 刘龙琼, 缪国卫, 等. 陈耳金矿深部开采巷道支护技术优化及应用[J]. 黄金, 2018, 39(4):31-35. LI Jiang, LIU Longqiong, MIAO Guowei, et al. Research and application of deep mining roadway support technology in Chener Gold Mine[J]. Gold, 2018, 39(4):31-35.
[30] 陈原望. 阿舍勒铜矿深井开采岩爆现象研究及应对措施探索[J]. 新疆有色金属, 2018,41(2):80-82.
[31] 宫凤强, 赵英杰, 王云亮,等. 煤的冲击倾向性研究进展及冲击地压“人-煤-环”三要素机理[J]. 煤炭学报, 2022, 47(5):1974-2010. GONG Fengqiang, ZHAO Yingjie, WANG Yunliang, et al. Research progress of coal bursting liability indices and coal burst “Human-Coal-Environment” three elements mechanism[J]. Journal of China Coal Society, 2022, 47(5):1974-2010.
[32] 钱七虎. 岩爆、冲击地压的定义、机制、分类及其定量预测模型[J].岩土力学,2014,35(1): 1-6. QIAN Qihu. Definition, mechanism, classification and quantitative forecast model for rockburst and pressure bump[J]. Rock and Soil Mechanics, 2014, 35(1):1-6.
[33] BERNABÉ Y, REVIL A. Pore-scale heterogeneity, energy dissipation and the transport properties of rocks[J]. Geophysical Research Letters, 2013, 22(12):1529-1532.
[34] 李果, 周承京, 张勇, 等. 地下工程岩爆研究现状综述[J]. 水利水电科技进展,2013, 33(3): 77-83. LI Guo, ZHOU Chengjing, ZHANG Yong, et al. Review of rockburst in underground engineering[J].Advances in Science and Technology of Water Resources, 2013, 33(3):77-83.
[35] 张镜剑, 傅冰骏. 岩爆及其判据和防治[J]. 岩石力学与工程学报,2008,27(10): 2034-2042. ZHANG Jingjian, FU Bingjun. Rockburst and its criteria and control[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(10):2034-2042.
[36] ORTLEPP W D, STACEY T R. Rockburst mechanisms in tunnels and shafts[J]. Tunnelling and Underground Space Technology, 1994, 9(1): 59-65.
[37] SINGH S P. Burst energy release index[J]. Rock Mechanics and Rock Engineering, 1988, 21(2): 149-155.
[38] BIENIAWSKI Z T. Mechanism of brittle fracture of rock: Part II:experimental studies[J]. International Journal of Rock Mechanics and Mining Sciences, 1967, 4(4): 407-423.
[39] 潘岳, 解金玉, 顾善发. 非均匀围压下矿井断层冲击地压的突变理论分析[J]. 岩石力学与工程学报, 2001,20(3):310-314. PAN Yue, XIE Jinyu, GU Shanfa. Catastrophe theory analysis of mining fault rockburst under nonuniform surrounding pressure[J]. Chinese Journal of Rock Mechanics and Engineering, 2001, 20(3):310-314.
[40] 陈士海, 夏晓, 彭陆强, 等. 深部隧道开挖时空效应及其黏弹塑性分析[J]. 隧道与地下工程灾害防治, 2021,3(1): 12-21. CHEN Shihai, XIA Xiao, PENG Luqiang, et al. Time-space effects and visco-elastoplastic analysis of deep tunnel excavation[J]. Hazard Control in Tunnelling and Underground Engineering, 2021, 3(1): 12-21.
[41] 章梦涛,徐曾和,潘一山,等. 冲击地压和突出的统一失稳理论[J]. 煤炭学报, 1991,16(4): 48-53. ZHANG Mengtao, XU Zenghe, PAN Yishan, et al. A united instability theory on coal(rock)burst and outburst[J].Journal of China Coal Society, 1991, 16(4):48-53.
[42] MITRI H S. Practitioner's guide to destress blasting in hard rock mines[D]. Montreal,Canada:McGill University, 2000.
[43] ZHOU J, CHEN C, DU K, et al. A new hybrid model of information entropy and unascertained measurement with different membership functions for evaluating destressability in burst-prone underground mines[J]. Engineering with Computers, 2020, 38(1): 381-399.
[44] 刘锋, 王昭坤, 马凤山, 等. 矿山深部卸压技术研究现状及展望[J]. 黄金科学技术, 2019, 27(3):425-432. LIU Feng, WANG Zhaokun, MA Fengshan, et al. Current situation and prospect of destressing techniques in deep mine [J]. Gold Science and Technology, 2019, 27(3):425-432.
[45] 马斌文, 邓志刚, 赵善坤, 等. 钻孔卸压防治冲击地压机理及影响因素分析[J]. 煤炭科学技术, 2020, 48(5):35-40. MA Binwen, DENG Zhigang, ZHAO Shankun, et al. Analysis on mechanism and influencing factors of drilling pressure relief to prevent rock burst[J]. Coal Science and Technology, 2020, 48(5):35-40.
[46] KONICEK P, SOUCEK K, STAS L, et al. Long-hole destress blasting for rockburst control during deep underground coal mining[J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 61:141-153.
[47] BOLESLAW K, RYSZARD S. Investigation of effects of concussion blasting combined with drilling destressing boreholes in roadsides on the reduction of gas and rock bursts hazards[J]. Przeglad Gorniczy, 1977, 33(6):1-5.
[48] 李杨杨, 张士川, 高立群, 等. 不等长工作面台阶区域覆岩运动诱冲机制及防治[J]. 岩土力学, 2016, 37(11):3283-3290. LI Yangyang, ZHANG Shichuan, GAO Liqun, et al. Mechanism and prevention of pressure burst in step region based on overburden strata movement of unequal length working face[J]. Rock and Soil Mechanics, 2016, 37(11):3283-3290.
[49] LI Z L, DOU L M, CAI W, et al. Roadway stagger layout for effective control of gob-side rock bursts in the longwall mining of a thick coal seam[J]. Rock Mechanics and Rock Engineering, 2016, 49(2):621-629.
[50] 徐向东.隧道岩爆防治作用机理初探[J].铁道工程学报, 2008, 25(10):36-39. XU Xiangdong. Preliminarily exploration on the function mechanism of prevention and treatment of rockbrust for tunnel[J]. Journal of Railway Engineering Society, 2008, 25(10):36-39.
[51] 刘红岗, 贺永年, 徐金海, 等. 深井煤巷钻孔卸压技术的数值模拟与工业试验[J]. 煤炭学报, 2007, 32(1):33-37. LIU Honggang, HE Yongnian, XU Jinhai, et al. Numerical simulation and industrial test of boreholes destressing technology in deep coal tunnel[J]. Journal of China Coal Society, 2007, 32(1):33-37.
[52] 郑贺, 王猛, 徐少辉. 深部巷道围岩钻孔卸压与围岩控制技术研究[J]. 矿业安全与环保, 2014, 41(5): 51-55. ZHENG He, WANG Meng, XU Shaohui. Research on surrounding rock pressure relief in deep roadway by borehole and its control technology[J]. Mining Safety & Environmental Protection, 2014, 41(5): 51-55.
[53] 刘金海, 姜福兴, 孙广京, 等. 强排煤粉防治冲击地压的机制与应用[J]. 岩石力学与工程学报, 2014,33(4):747-754. LIU Jinhai, JIANG Fuxing, SUN Guangjing,et al. Mechanism of intensive venting pulverized coal to prevent coal burst and its application[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(4):747-754.
[54] 胡毅夫,张常亮. 钻孔卸压技术在渣滓溪锑矿岩爆防治中的应用[J]. 有色金属工程, 2016, 6(1): 63-66. HU Yifu, ZHANG Changliang. Application of pressure relief technology by drilling holes to rock burst prevention in Zhazixi antimony mine[J]. Nonferrous Metals Engineering, 2016, 6(1): 63-66.
[55] 王猛, 王襄禹, 肖同强. 深部巷道钻孔卸压机理及关键参数确定方法与应用[J]. 煤炭学报, 2017, 42(5):1138-1145. WANG Meng, WANG Xiangyu, XIAO Tongqiang. Borehole destressing mechanism and determination method of its key parameters in deep roadway[J]. Journal of China Coal Society, 2017, 42(5):1138-1145.
[56] LI Y Y, GUO R W, ZHANG S C, et al. Experimental study on pressure relief mechanism of variable-diameter borehole and energy evolution characteristics of the surrounding rock[J]. Energies, 2022,15(18): 6596.
[57] 田莉梅, 张英, 张景华. 深部开采高地应力区钻孔卸压数值模拟及应用[J]. 金属矿山, 2017(4):31-35. TIAN Limei, ZHANG Ying, ZHANG Jinghua. Numerical simulation and application of boreholes destressing technology in high in-situ sress zone during deep mining[J]. Metal Mine, 2017(4):31-35.
[58] 吝曼卿, 柯晓苏, 张电吉, 等. 基于“协同开采”理念的深部磷矿岩爆防控研究[J]. 金属矿山,2020(5):158-163. LIN Manqing, KE Xiaosu, ZHANG Dianji, et al. Study on the rockburst prevention and control of deep phosphate mine based on the concept of “synergetic mining” [J]. Metal Mine, 2020(5):158-163.
[59] WEN Yanliang, ZHANG Guojian, ZHANG Zhiqiang. Numerical experiments of drilling pressure relief preventing roadway rock burst[J]. Applied Mechanics and Materials, 2013, 353/354/355/356: 1583-1587.
[60] 李勇武. 坚硬顶板管理与冲击地压控制学术会议综述[J].煤炭学报, 1980,5(4):65.
[61] 李金凯.“溶洞泥”等固体物突入矿坑问题[J].中国岩溶,1984,3(2):145-150. LI Jinkai. Problems of mud solids intrusion into mining pits[J]. Carsologica Sinica, 1984, 3(2):145-150.
[62] 陈宗基. 岩爆的工程实录、理论与控制[J].岩石力学与工程学报,1987,6(1):1-18. TAN Tjongkie. Rockbursts, case records, theory and control[J]. Chinese Journal of Rock Mechanics and Engineering, 1987, 6(1):1-18.
[63] 梁政国. 煤矿岩爆发生的成因、规律及其防治[J]. 阜新矿业学院学报,1988,7(4):65-71.
[64] 弭庆录,褚洪敏.防止岩爆危害的工程方法[J].河北煤炭建筑工程学院学报,1993(2):34-40. MI Qinglu, CHU Hongmin. Engineering way for preventing rockburst damage[J]. Journal of Hebei University of Engineering(Natural Science Edition), 1993(2):34-40.
[65] 李俊平,王红星,王晓光,等.卸压开采研究进展[J].岩土力学,2014,35(增刊2):350-358. LI Junping, WANG Hongxing, WANG Xiaoguang, et al. Research progress in pressure-relief mining[J]. Rock and Soil Mechanics, 2014, 35(Suppl.2):350-358.
[66] ROEST J P A. 在高应力状态下通过巷道围岩卸压圈保障巷道的稳定[J].贺永和,译.矿山压力, 1985(1):74-77.
[67] ШЕМЯКИН Е И. Эффект зональной дезентеграции горных пород вокруг подземных выработок[J].Доклады АН СССР, 1986, 289(5): 1088-1094.
[68] 段克信. 用巷帮松裂爆破卸压维护软岩巷道[J]. 煤炭学报, 1995, 20(3):311-316. DUAN Kexin. Maintenance of roadways in soft rocks by destress blasting of roadway-rib[J]. Journal of China Coal Society, 1995, 20(3):311-316.
[69] 史元伟, 齐庆新, 古全忠. 国外煤矿冲击地压防治与采掘工程岩层控制[M]. 北京: 煤炭工业出版社,2013:8-15.
[70] 孟进军, 陈俊国, 董正筑. 卸压孔围岩应力分布的复变函数解法[J].矿山压力与顶板管理, 2005,22(2):63-65.
[71] 吴健, 陆明心, 张勇, 等. 综放工作面围岩应力分布的实验研究[J].岩石力学与工程学报, 2002, 21(增刊2):2356-2359. WU Jian, LU Mingxin, ZHANG Yong, et al. Simulation research on stress distribution of surrounding rocks of lTCC workface[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(Suppl.2): 2356-2359.
[72] 熊祖强, 贺怀建. 深井矿山硬岩巷道岩爆治理方案研究[J]. 化工矿物与加工, 2006, 35(9):25-27. XIONG Zuqiang, HE Huaijian. Approch to controlling measurements of rockburst in deep tunnel with hard wall rock[J]. Industrial Minerals & Processing, 2006, 35(9): 25-27.
[73] 齐燕军, 靖洪文, 孟波, 等. 卸压孔尺寸效应的模型试验研究[J]. 采矿与安全工程学报, 2018, 35(3):538-544. QI Yanjun, JING Hongwen, MENG Bo, et al. Experimental modelling on size effect of pressure relief hole[J]. Journal of Mining & Safety Engineering, 2018, 35(3):538-544.
[74] TANG B, MITRI H. Numerical modelling of rock preconditioning by destress blasting[J]. Proceedings of the Institution of Civil Engineers-Ground Improvement, 2001, 5(2): 57-67.
[75] 张强, 孙国庆, 索江伟, 等. 深部花岗岩钻孔卸荷三维数值模拟[J]. 应用力学学报, 2017, 34(5): 988-994. ZHANG Qiang, SUN Guoqing, SUO Jiangwei, et al. The 3D numerical simulation of deep granite borehole unloading[J]. Chinese Journal of Applied Mechanics, 2017, 34(5): 988-994.
[76] 贾传洋, 蒋宇静, 张学朋, 等. 大直径钻孔卸压机理室内及数值试验研究[J]. 岩土工程学报, 2017, 39(6):1115-1122. JIA Chuanyang, JIANG Yujing, ZHANG Xuepeng, et al. Laboratory and numerical experiments on pressure relief mechanism of large-diameter boreholes[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(6):1115-1122.
[77] 张闯, 唐建新, 腾俊洋, 等. 孔洞数量及孔径对大理岩力学特性影响的试验研究[J]. 岩土力学, 2017, 38:41-50. ZHANG Chuang, TANG Jianxin, TENG Junyang, et al. Experimental study of influences of pore number and pore size on mechanical properties of marble[J]. Rock and Soil Mechanics, 2017, 38:41-50.
[78] HUANG B, GUO W Y, FU Z Y, et al. Experimental investigation of the influence of drilling arrangements on the mechanical behavior of rock models[J]. Geotechnical and Geological Engineering, 2018, 36(4):2425-2436.
[79] ZHAO T B, GUO W Y, YU F H, et al. Numerical investigation of influences of drilling arrangements on the mechanical behavior and energy evolution of coal models[J]. Advances in Civil Engineering, 2018, 2018: 1-12.
[80] ZHANG S C, LI Y Y, SHEN B, et al. Effective evaluation of pressure relief drilling for reducing rock bursts and its application in underground coal mines[J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 114:7-16.
[81] HE Z C, GONG F Q, WU W X, et al. Experimental investigation of the mechanical behaviors and energy evolution characteristics of red sandstone specimens with holes under uniaxial compression[J]. Bulletin of Engineering Geology and the Environment, 2021, 80(7):5845-5865.
[82] LIN P, WONG R H C, TANG C A. Experimental study of coalescence mechanisms and failure under uniaxial compression of granite containing multiple holes[J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 77:313-327.
[83] HUANG Y H, YANG S Q, TIAN W L. Cracking process of a granite specimen that contains multiple pre-existing holes under uniaxial compression[J]. Fatigue & Fracture of Engineering Materials & Structures, 2019, 42(6):1341-1356.
[84] WU H, ZHAO G Y, LIANG W Z. Investigation of cracking behavior and mechanism of sandstone specimens with a hole under compression[J]. International Journal of Mechanical Sciences, 2019, 163: 105084.
[85] ZENG W, YANG S Q, TIAN W L. Experimental and numerical investigation of brittle sandstone specimens containing different shapes of holes under uniaxial compression[J]. Engineering Fracture Mechanics, 2018, 200:430-450.
[86] HE Z C, GONG F Q, LUO S. Evaluation of the rockburst proneness of red sandstone with prefabricated boreholes: an experimental study from the energy storage perspective[J]. Geomatics, Natural Hazards and Risk, 2021, 12(1):2117-2154.
[87] 刘冬桥, 刘赫赫, 王炀,等. 钻孔卸压防治岩爆实验及破坏特征研究[J]. 岩石力学与工程学报, 2023, 42(1):100-114. LIU Dongqiao, LIU Hehe, WANG Yang, et al. Experiment study on drilling pressure relief for rockburst prevention and its failure characteristics[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(1):100-114.
[88] 王书文, 潘俊锋, 刘少虹, 等. 基于能量耗散率的钻孔防冲效果评价方法[J]. 煤炭学报, 2016, 41(增刊2): 297-304. WANG Shuwen, PAN Junfeng, LIU Shaohong, et al. Evaluation method for rockburst-preventing effects by drilling based on energy-dissipating rate[J]. Journal of China Coal Society, 2016, 41(Suppl.2): 297-304.
[89] 朱斯陶, 姜福兴, 史先锋, 等. 防冲钻孔参数确定的能量耗散指数法[J]. 岩土力学, 2015, 36(8):2270-2276. ZHU Sitao, JIANG Fuxing, SHI Xianfeng, et al. Energy dissipation index method for determining rockburst prevention drilling parameters[J]. Rock and Soil Mechanics, 2015, 36(8):2270-2276.
[90] 王爱文,高乾书,潘一山, 等. 预制钻孔煤样冲击倾向性及能量耗散规律[J]. 煤炭学报, 2021,46(3): 959-972. WANG Aiwen, GAO Qianshu, PAN Yishan, et al. Bursting liability and energy dissipation laws of prefabricated borehole coal samples[J]. Journal of China Coal Society, 2021, 46(3):959-972.
[91] GONG F Q, HE Z C, JIANG Q. Internal mechanism of reducing rockburst proneness of rock under high stress by real-time drilling pressure relief[J]. Rock Mechanics and Rock Engineering, 2022, 55(8): 5063-5081.
[92] GONG F Q, HE Z C, SI X F. Experimental study on revealing the mechanism of rockburst prevention by drilling pressure relief: status-of-the-art and prospects[J]. Geomatics, Natural Hazards and Risk, 2022, 13(1): 2442-2470.
[93] 齐庆新, 李一哲, 赵善坤, 等. 我国煤矿冲击地压发展70年:理论与技术体系的建立与思考[J]. 煤炭科学技术, 2019, 47(9):1-40. QI Qingxin, LI Yizhe, ZHAO Shankun, et al. Seventy years development of coal mine rockburst in China: establishment and consideration of theory and technology system[J]. Coal Science and Technology, 2019, 47(9):1-40.
[94] 宫凤强, 代金豪, 王明洋, 等. 高地应力“强度&应力”耦合判据及其分级标准[J]. 工程地质学报, 2022,30(6):1893-1913. GONG Fengqiang, DAI Jinhao, WANG Mingyang, et al. “Strength & stress” coupling criterion and its grading standard for high geostress[J].Journal of Engineering Geology, 2022, 30(6):1893-1913.
[95] 李夕兵,宫凤强,王少锋,等. 深部硬岩矿山岩爆的动静组合加载力学机制与动力判据[J]. 岩石力学与工程学报,2019, 38(4):708-723. LI Xibing, GONG Fengqiang, WANG Shaofeng, et al. Coupled static-dynamic loading mechanical mechanism and dynamic criterion of rockburst in deep hard rock mines[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(4): 708-723.
[96] 王琦,吴文瑞,何满潮,等.恒阻吸能锚固岩体动力特性及控制机制研究[J/OL].煤炭学报,2023.(2023-02-09)[2023-02-18].https://doi.org/10.13225/j.cnki.jccs.2022.1237. WANG Qi, WU Wenrui, HE Manchao, et al. Study on dynamic characteristics and control mechanism of anchored rock with constant resistance and energy absorption material[J/OL].Journal of China Coal Society, 2023.(2023-02-09)[2023-02-18].https://doi.org/10.13225/j.cnki.jccs.2022.1237.
[97] HUA A Z, YOU M Q. Rock failure due to energy release during unloading and application to underground rock burst control[J]. Tunnelling and Underground Space Technology, 2001, 16(3):241-246.
[98] PENG R D, JU Y, WANG J G, et al. Energy dissipation and release during coal failure under conventional triaxial compression[J]. Rock Mechanics and Rock Engineering, 2015, 48(2):509-526.
[99] MIAO S J, CAI M F, GUO Q F, et al. Rock burst prediction based on in situ stress and energy accumulation theory[J]. International Journal of Rock Mechanics and Mining Sciences, 2016, 83:86-94.
[100] ORTLEPP W D, STACEY T R. Rockburst mechanisms in tunnels and shafts[J]. Tunnelling and Underground Space Technology, 1994, 9(1):59-65.
[101] CAI M. Rock support in strainburst-prone ground[J]. International Journal of Mining Science and Technology, 2019, 29(4):529-534.
[102] LI Y R, HUANG D, LI X A. Strain rate dependency of coarse crystal marble under uniaxial compression: strength, deformation and strain energy[J]. Rock Mechanics and Rock Engineering, 2014, 47(4):1153-1164.
[103] GONG F Q, WANG Y L, LUO S. Rockburst proneness criteria for rock materials: review and new insights[J]. Journal of Central South University, 2020, 27(10):2793-2821.
[104] MENG Q B, ZHANG M W, HAN L J, et al. Effects of acoustic emission and energy evolution of rock specimens under the uniaxial cyclic loading and unloading compression[J]. Rock Mechanics and Rock Engineering, 2016, 49(10): 3873-3886.
[105] 谭以安.关于岩爆岩石能量冲击性指标的商榷[J].水文地质工程地质,1992,19(2):10-12. TAN Yian. Discussion on energy impact index of rock burst[J]. Hydrogeology and Engineering Geology, 1992, 19(2):10-12.
[106] GONG F Q, YAN J Y, LI X B, et al. A peak-strength strain energy storage index for rock burst proneness of rock materials[J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 117:76-89.
[107] SU G S, FENG X T, WANG J H, et al. Experimental study of remotely triggered rockburst induced by a tunnel axial dynamic disturbance under true-triaxial conditions[J]. Rock Mechanics and Rock Engineering, 2017, 50(8): 2207-2226.
[108] 何满潮, 刘冬桥, 宫伟力, 等. 冲击岩爆试验系统研发及试验[J]. 岩石力学与工程学报, 2014, 33(9): 1729-1739. HE Manchao, LIU Dongqiao, GONG Weili, et al. Development of a testing system for impact rockbursts[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(9):1729-1739.
[109] 宫凤强, 罗勇,司雪峰, 等. 深部圆形隧洞板裂屈曲岩爆的模拟试验研究[J]. 岩石力学与工程学报,2017, 36(7): 1634-1648. GONG Fengqiang, LUO Yong, SI Xuefeng, et al. Experimental modelling on rockburst in deep hard rock circular tunnels[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(7):1634-1648.
[110] SU G S, CHEN Z, JU J W, et al. Influence of temperature on the strainburst characteristics of granite under true triaxial loading conditions[J]. Engineering Geology, 2017, 222: 38-52.
[111] 司雪峰,宫凤强.深部高应力圆形隧洞内部卸荷条件下岩爆模拟试验和强度弱化效应研究[J].岩石力学与工程学报,2021,40(2):276-289. SI Xuefeng, GONG Fengqiang.Rockburst simulation tests and strength-weakening effect of circular tunnels under deep high stresses and internal unloading conditions[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(2):276-289.
[112] SI X F, LI X, GONG F Q, et al. Experimental investigation of failure process and characteristics in circular tunnels under different stress states and internal unloading conditions[J]. International Journal of Rock Mechanics and Mining Sciences, 2022, 154: 105116.
[113] 宫凤强, 闫景一, 李夕兵. 基于线性储能规律和剩余弹性能指数的岩爆倾向性判据[J]. 岩石力学与工程学报, 2018,37(9): 1993-2014. GONG Fengqiang, YAN Jingyi, LI Xibing. A new criterion of rock burst proneness based on the linear energy storage law and the residual elastic energy index[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(9): 1993-2014.
[114] GONG F Q, YAN J Y, LUO S, et al. Investigation on the linear energy storage and dissipation laws of rock materials under uniaxial compression[J]. Rock Mechanics and Rock Engineering, 2019, 52(11):4237-4255.
[115] SU Y Q, GONG F Q, LUO S, et al. Experimental study on energy storage and dissipation characteristics of granite under two-dimensional compression with constant confining pressure[J]. Journal of Central South University, 2021, 28(3): 848-865.
[116] LUO S, GONG F Q, LI L L, et al. Linear energy storage and dissipation laws and damage evolution characteristics of rock under triaxial cyclic compression with different confining pressure[J]. Transtion of Nonferrous Mettals Society of China, 2022, 10(1): 1-27.
[117] LUO S, GONG F Q. Linear energy storage and dissipation laws during rock fracture under three-point flexural loading[J]. Engineering Fracture Mechanics, 2020, 234:107102.
[1] 赵毅. TBM强岩爆掘进段小导洞超前应力释放施工技术[J]. 隧道与地下工程灾害防治, 2022, 4(1): 78-85.
[2] 郭新新, 朱安龙, 王万平, 汪波, 王智佼, 王振宇. 高应力炭质板岩隧道大变形特征及其机理分析[J]. 隧道与地下工程灾害防治, 2021, 3(4): 29-39.
[3] 马春驰,陈柯竹,李天斌,曾俊,马佳骥. 基于GDEM的应力-结构型岩爆数值模拟研究[J]. 隧道与地下工程灾害防治, 2020, 2(3): 85-94.
[1] QIAN Qihu. Scientific use of the urban underground space to construction the harmonious livable and beautiful city[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 1 -7 .
[2] DENG Mingjiang, LIU Bin. Challenges, countermeasures and development direction of geological forward-prospecting for TBM cluster tunneling in super-long tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 8 -19 .
[3] DING Xiuli, ZHANG Yuting, ZHANG Chuanjian, YAN Tianyou, HUANG Shuling. Review on countermeasures and their adaptability evaluation to tunnels crossing active faults[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 20 -35 .
[4] JIAO Yuyong, ZHANG Weishe, OU Guangzhao, ZOU Junpeng, CHEN Guanghui. Review of the evolution and mitigation of the water-inrush disaster in drilling-and-blasting excavated deep-buried tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 36 -46 .
[5] ZHANG Qingsong, ZHANG Lianzhen, LI Peng, FENG Xiao. New progress in grouting reinforcement theory of water-rich soft stratum in underground engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 47 -57 .
[6] XIA Kaiwen, XU Ying, CHEN Rong. Dynamic tests of rocks subjected to simulated deep underground environments[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 58 -75 .
[7] HONG Kairong. Study on rock breaking and wear of TBM hob in high-strength high-abrasion stratum[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 76 -85 .
[8] TAN Zhongsheng. Application experimental study of high-strength lattice girders with heat treatment in tunnel engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 86 -92 .
[9] CHEN Jianxun, LUO Yanbin. The stability of structure and its control technology for lager-span loess tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 93 -101 .
[10] JING Hongwen, YU Liyuan, SU Haijian, GU Jincai, YIN Qian. Development and application of catastrophic experiment system for water inrush in surrounding rock of deep tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 102 -110 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn