Please wait a minute...
 
隧道与地下工程灾害防治  2021, Vol. 3 Issue (4): 29-39    DOI: 10.19952/j.cnki.2096-5052.2021.04.04
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
高应力炭质板岩隧道大变形特征及其机理分析
郭新新1,朱安龙2,王万平3,汪波1*,王智佼4,王振宇1
1.西南交通大学交通隧道工程教育部重点实验室, 四川 成都 610031;2.中国电建集团华东勘测设计研究院有限公司, 浙江 杭州 311122;3.中交第一公路勘察设计研究院有限公司, 陕西 西安 710075;4.甘肃长达路业有限责任公司, 甘肃 兰州 730030
Large deformation characteristics and mechanism analysis of high-stress carbonaceous slate tunnel
GUO Xinxin1, ZHU Anlong2, WANG Wanping3, WANG Bo1*, WANG Zhijiao4, WANG Zhenyu1
1. Key Laboratory of Transportation Tunnel Engineering of Ministry of Education, Southwest Jiaotong University, Chengdu 610031, Sichuan, China;
2. PowerChina Huadong Engineering Co., Ltd., Hangzhou 311122, Zhejiang, China;
3. CCCC First Highway Consultants Co., Ltd., Xi'an 710075, Shaanxi, China;
4. Gansu Changda Highway Co., Ltd., Lanzhou 730030, Gansu, China
下载:  PDF (17872KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 以渭武高速木寨岭公路隧道为工程背景,通过典型大变形灾害实录和岩体特性等,分析高应力炭质板岩隧道的大变形特征及其机理。研究结果表明:炭质板岩隧道主要存在常规型和突发型两种大变形模式;揉皱发育的炭质板岩段大于薄层单斜构造炭质板岩段大于层状炭质板岩夹砂质板岩段(互层段);炭质板岩的变形机理主要有板梁弯曲变形、互层状结构顺层滑移和塑性流动,其中揉皱发育段以塑性流动为主,薄层单斜构造段以板梁弯曲变形为主,而互层段则以顺层滑移为主。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭新新
朱安龙
王万平
汪波
王智佼
王振宇
关键词:  隧道工程  炭质板岩  大变形  变形特征  变形机理  高应力    
Abstract: Taking the Muzhailing Highway Tunnel of Weiwu Expressway as the engineering background, the characteristics and mechanism of the large deformation of the high-stress carbonaceous slate tunnel were analyzed through the records of typical large-deformation disasters and rock mass characteristics. The results of the study showed that the carbonaceous slate tunnel mainly had two large deformation modes, namely conventional type and sudden type; for different lithological sections, the deformation of the surrounding rock was generally expressed as “corrugated developed carbonaceous slate section> thin monoclinic structural carbonaceous slate section> layered carbonaceous slate interbedded with sandy slate section(interbedded section)”; the deformation mechanism of carbonaceous slate mainly included “slab beam” bending deformation, interlayered structure bedding-slip and plastic flow. The corrugated development section was dominated by plastic flow, the thin monoclinic structure section was dominated by “slab beam” bending deformation, and the interbedded section was dominated by bedding-slip.
Key words:  tunnel engineering    carbonaceous slate    large deformation    deformation characteristic    deformation mechanism    high stress
收稿日期:  2021-06-17      修回日期:  2021-07-26      发布日期:  2021-12-20     
中图分类号:  U45  
基金资助: 国家自然科学基金项目(U2034205);甘肃省科技计划资助项目(19ZD2GA005)
通讯作者:  汪波(1975— ),男,安徽郎溪人,教授,博士,博士生导师,主要研究方向为隧道与地下工程.    E-mail:  ahbowang@163.com
作者简介:  郭新新(1990— ),男,浙江温岭人,博士研究生,主要研究方向为隧道与地下工程. E-mail:zj_gxinxin@163.com
引用本文:    
郭新新, 朱安龙, 王万平, 汪波, 王智佼, 王振宇. 高应力炭质板岩隧道大变形特征及其机理分析[J]. 隧道与地下工程灾害防治, 2021, 3(4): 29-39.
GUO Xinxin, ZHU Anlong, WANG Wanping, WANG Bo, WANG Zhijiao, WANG Zhenyu. Large deformation characteristics and mechanism analysis of high-stress carbonaceous slate tunnel. Hazard Control in Tunnelling and Underground Engineering, 2021, 3(4): 29-39.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2021/V3/I4/29
[1] 郭新新,杨铁轮,马振旺,等.软岩挤压型大变形隧道锚杆施工特性及工艺优化[J].铁道科学与工程学报,2020,17(4):924-930. GUO Xinxin, YANG Tielun, MA Zhenwang, et al. Construction characteristics and process optimization of bolts in soft rock squeeze large deformation tunnels[J]. Chinese Journal of Railway Science and Engineering, 2020, 17(4):924-930.
[2] 刘阳,伍晓军,刘志强,等.关于碳质板岩隧道大变形机理及应对措施的探讨[J].现代隧道技术,2014,51(6):19-24. LIU Yang, WU Xiaojun, LIU Zhiqiang, et al. Discussion on the mechanism and countermeasures of large deformation of carbonaceous slate tunnel[J].Modern Tunnel Technology, 2014, 51(6):19-24.
[3] 李永林,冯学钢,姜云,等.隧道工程围岩大变形及预测预报研究[J].现代隧道技术,2005,52(5):49-54. LI Yonglin, FENG Xuegang, JIANG Yun, et al. Research on large deformation and prediction of surrounding rock in tunnel engineering[J].Modern Tunnel Technology, 2005, 52(5):49-54.
[4] 姜云,李永林,李天斌,等.隧道工程围岩大变形类型与机制研究[J].地质灾害与环境保护,2004,15(4): 46-51. JIAN Yun, LI Yonglin, LI Tianbin, et al. Study of the classified system of types and mechanism of great distortion in tunnel and underground engineering[J]. Journal of Geological Hazards and Environment Preservation, 2004, 15(4): 46-51.
[5] MENG Lubo, LI Tianbin, JIANG Yun, et al. Characteristics and mechanisms of large deformation in the Zhegu Mountain Tunnel on the Sichuan-Tibet Highway[J]. Tunnelling and Underground Space Technology, 2013, 37: 157-164
[6] 陈子全,何川,吴迪,等.高地应力层状软岩隧道大变形预测分级研究[J].西南交通大学学报,2018,53(6):1237-1244. CHEN Ziquan, HE Chuan, WU Di, et al. Research on the classification of large deformation prediction of high ground stress layered soft rock tunnel[J]. Journal of Southwest Jiaotong University, 2018, 53(6):1237-1244.
[7] WANG B, LI T B, HE C, et al. Characteristics, causes and control measures of disasters for the soft-rock tunnels in the Wenchuan seismic regions[J]. Journal of Geophysics and Engineering, 2016, 13(4): 470-480.
[8] 王云龙, 谭忠盛. 木寨岭板岩隧道塌方的结构失稳分析及预防措施研究[J]. 岩土力学, 2012,33(增刊2): 263-268. WANG Yunlong, TAN Zhongsheng. Structural instability analysis and prevention measures of structural collapse in Muzhailing Slate Tunnel[J]. Rock and Soil Mechanics, 2012, 33(Suppl.2): 263-268.
[9] 廖俊.毛羽山隧道软岩大变形特征及原因分析[J].铁道建筑,2013,53(8):79-81.
[10] 汪波, 王振宇, 郭新新, 等. 软岩隧道中基于快速预应力锚固支护的变形控制技术[J]. 中国公路学报, 2021,34(3): 171-182. WANG Bo, WANG Zhenyu, GUO Xinxin, et al. Deformation control technology based on fast-prestressed anchor support in soft rock tunnel[J]. China Journal of Highway and Transport, 2021, 34(3): 171-182.
[11] 汪波, 郭新新, 何川, 等. 当前我国高地应力隧道支护技术特点及发展趋势浅析[J]. 现代隧道技术, 2018,55(5): 1-10. WANG Bo, GUO Xinxin, HE Chuan, et al. Analysis on the characteristics and development trends of the support technology of high ground stress tunnels in China[J]. Modern Tunnelling Technology, 2018, 55(5): 1-10.
[12] 刘志强,宋冶,胡元芳.隧道挤压型变形与支护特性研究[J].岩土力学,2013,34(增刊1):413-418. LIU Zhiqiang, SONG Ye, HU Yuanfang. Study of squeezing deformation and support characteristics of tunnels[J]. Rock and Soil Mechanics, 2013, 34(Suppl.1):413-418.
[13] 徐国文,何川,代聪,等. 复杂地质条件下软岩隧道大变形破坏机制及开挖方法研究[J]. 现代隧道技术, 2017,54(5): 146-154. XU Guowen, HE Chuan, DAI Cong, et al. Failure mechanism and excavation method for soft-rock tunnels with large deformation under complex geological conditions[J]. Modern Tunnelling Technology, 2017, 54(5): 146-154.
[14] 喻渝.挤压性围岩支护大变形的机理及判定方法[J].世界隧道,1998(1):46-51. YU Yu. Serious deformation of surrounding rock in squeezing ground[J]. World Tunnel, 1998(1): 46-51.
[15] 何满潮,景海河,孙晓明.软岩工程力学[M].北京:科学出版社,2004: 94-100.
[16] 黄兴,刘泉声,刘滨,等.TBM围岩挤压大变形特性分析与等级划分[J].采矿与安全工程学报,2015,32(2):260-266. HUANG Xing, LIU Quansheng, LIU Bin, et al. Study on the properties of TBM surrounding rock large squeezing deformation and its grading[J]. Journal of Mining & Safety Engineering, 2015, 32(2): 260-266.
[17] HOEK E, MARINOS P. Predicting tunnel squeezing problems in weak heterogeneous rock masses[J]. Tunnels and Tunnelling International, 2000, 32(11):45-51.
[18] 潘玉杰. 板裂状围岩变形破裂特征及稳定性研究[D]. 成都: 西南交通大学, 2019. PAN Yujie. Experimental study on the friction and distribution characteristics of the side wall of the super deep and large sinking[D]. Chengdu: Southwest Jiaotong University, 2019.
[19] 傅鹤林, 范臻辉, 朱汉华, 等. 板裂介质围岩中的隧道衬砌与围岩相互作用机理研究[J]. 公路交通科技, 2003,20(5): 64-67. FU Helin, FAN Zhenhui, ZHU Hanhua, et al. Study on interaction principle between reinforcement and rockmass in tunnel in sheet crack rockmass[J]. Journal of Highway and Transportation Research and Development, 2003, 20(5): 64-67.
[20] JAEGER J C. Shear failure of anistropic rocks[J]. Geological Magazine, 1960, 97(1): 65-72.
[21] 冒海军, 杨春和. 结构面对板岩力学特性影响研究[J]. 岩石力学与工程学报, 2005,24(20):53-58. MAO Haijun, YANG Chunhe. Study on effects of discontinuities on mechanical characters of slate[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(20):53-58.
[22] 郑青松,刘恩龙,刘明星. 三轴试验下结构面倾角对制备岩样力学特性的影响[J]. 岩土力学, 2019,40(5): 1854-1861. ZHENG Qingsong, LIU Enlong, LIU Mingxing. Influence of dip angle of structural planes on mechanical properties of artificial rock samples under triaxial test conditions[J]. Rock and Soil Mechanics, 2019, 40(5): 1854-1861.
[23] 徐慧臣. 木寨岭深埋隧道板岩吸水强度软化结构效应实验研究[D]. 北京: 中国矿业大学(北京), 2019. XU Huichen. Experimental study on strength softening of slate after water absorption due to structure effects for muzhailing deep-buried tunnel[D]. Beijing: China University of Mining and Technology-Beijing, 2019.
[1] 宫凤强, 何志超. 钻孔卸压防治岩爆机理的试验研究进展与展望[J]. 隧道与地下工程灾害防治, 2023, 5(2): 1-23.
[2] 裴超, 肖勇, 朱智勇, 刘艳萍, 杨文波, 赵亮亮. 复杂应力环境中隧道大变形特征与形变控制[J]. 隧道与地下工程灾害防治, 2023, 5(2): 89-98.
[3] 韩兴博, 陈子明, 苏恩杰, 梁晓明, 宋桂峰, 叶飞. 盾构隧道围岩压力分布规律及作用模式[J]. 隧道与地下工程灾害防治, 2022, 4(4): 34-43.
[4] 戴军, 杨鑫, 王建军, 仇文革, 朱麒. 限阻耗能型支护在大变形双线铁路隧道中的应用[J]. 隧道与地下工程灾害防治, 2022, 4(4): 44-51.
[5] 王明耀, 鲁义强, 贺飞, 李潮. 软岩大变形分类分级方法及TBM适应性[J]. 隧道与地下工程灾害防治, 2022, 4(4): 79-90.
[6] 杨文波, 王宗学, 田浩晟, 吴枋胤, 杨自成. 基于PSO-SVM算法的层状软岩隧道大变形预测方法[J]. 隧道与地下工程灾害防治, 2022, 4(1): 29-37.
[7] 房倩, 杜建明, 王赶, 杨晓旭. 模型边界对圆形隧道开挖引起地表沉降的影响分析[J]. 隧道与地下工程灾害防治, 2022, 4(1): 10-17.
[8] 张姣龙, 高一民, 张建, 周浩, 潘野, 柯磊, 柳献. 一种模拟盾构刀盘破岩过程的模型试验设计原理和方法[J]. 隧道与地下工程灾害防治, 2021, 3(4): 20-28.
[9] 王纪伟, 张连震, 张庆松, 杨旆, 陈新, 王建辉, 韩子川, 王洪超, 孙子正, 屠文锋. 富水裂隙岩体注浆材料适用性现场试验研究[J]. 隧道与地下工程灾害防治, 2021, 3(1): 58-67.
[10] 王玉杰,沈强,曹瑞琅,龚秋明,刘立鹏. 大变形围岩TBM施工适应性分类标准研究[J]. 隧道与地下工程灾害防治, 2020, 2(4): 37-43.
[11] 刘立鹏,王彦兵,宋倩. 水工有压隧洞衬砌启裂水头及围岩联合承载影响分析[J]. 隧道与地下工程灾害防治, 2020, 2(4): 52-58.
[12] 贺斯进,赵一行,张慧鹏,饶凯,袁聪聪,石钰锋. 基于某桩锚式围护结构大变形加固方案[J]. 隧道与地下工程灾害防治, 2020, 2(4): 59-64.
[13] 王福善. 木寨岭隧道极高地应力软岩大变形控制技术[J]. 隧道与地下工程灾害防治, 2020, 2(4): 65-73.
[14] 叶飞,王坚,田崇明,何彪,赵猛,韩兴博,李永健. 隧道排水管结晶堵塞病害研究现状与防治技术[J]. 隧道与地下工程灾害防治, 2020, 2(3): 13-22.
[15] 李鹏飞,刘宏翔,赵勇,刘建友,王帆. 隧道穿越断层破碎带防突水最小安全厚度及其影响因素[J]. 隧道与地下工程灾害防治, 2020, 2(3): 77-84.
[1] QIAN Qihu. Scientific use of the urban underground space to construction the harmonious livable and beautiful city[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 1 -7 .
[2] DENG Mingjiang, LIU Bin. Challenges, countermeasures and development direction of geological forward-prospecting for TBM cluster tunneling in super-long tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 8 -19 .
[3] DING Xiuli, ZHANG Yuting, ZHANG Chuanjian, YAN Tianyou, HUANG Shuling. Review on countermeasures and their adaptability evaluation to tunnels crossing active faults[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 20 -35 .
[4] JIAO Yuyong, ZHANG Weishe, OU Guangzhao, ZOU Junpeng, CHEN Guanghui. Review of the evolution and mitigation of the water-inrush disaster in drilling-and-blasting excavated deep-buried tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 36 -46 .
[5] ZHANG Qingsong, ZHANG Lianzhen, LI Peng, FENG Xiao. New progress in grouting reinforcement theory of water-rich soft stratum in underground engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 47 -57 .
[6] XIA Kaiwen, XU Ying, CHEN Rong. Dynamic tests of rocks subjected to simulated deep underground environments[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 58 -75 .
[7] HONG Kairong. Study on rock breaking and wear of TBM hob in high-strength high-abrasion stratum[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 76 -85 .
[8] TAN Zhongsheng. Application experimental study of high-strength lattice girders with heat treatment in tunnel engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 86 -92 .
[9] CHEN Jianxun, LUO Yanbin. The stability of structure and its control technology for lager-span loess tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 93 -101 .
[10] JING Hongwen, YU Liyuan, SU Haijian, GU Jincai, YIN Qian. Development and application of catastrophic experiment system for water inrush in surrounding rock of deep tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 102 -110 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn