Please wait a minute...
 
隧道与地下工程灾害防治  2023, Vol. 5 Issue (4): 81-92    DOI: 10.19952/j.cnki.2096-5052.2023.04.09
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
隧洞突水突泥次生灾害诱因与防治技术
郝俊锁1,刘俊峰1,刘浩1,赵明蕃2
1.中铁十八局集团第二工程有限公司, 河北 唐山 064000;2.西南交通大学交通隧道工程教育部重点实验室, 四川 成都 610031
Inducement and prevention technology of secondary disasters of water and mud inrush in tunnel
HAO Junsuo1, LIU Junfeng1, LIU Hao1, ZHAO Mingfan2
1. China Railway 18th Bureau Group Second Engineering Co., Ltd., Tangshan 064000, Hebei, China;
2. Key Laboratory of Transportation Tunnel Engineering, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
下载:  PDF (3198KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 为探究地下工程突水突泥次生灾害主要影响因素以及控制方法,通过总结2010年以来有关案例,总结孕灾环境与致灾因子,提出突水突泥次生灾害预防与控制技术。以滇中引水狮子山隧洞穿越FⅢ-71断层二次突水突泥为例,探明该地质段灾害成因,将次生灾害演变过程分为3个阶段:孕育阶段、潜存阶段和诱发阶段;提出改善外部环境的状态、阻断灾变演化路径、提高防突层承受能力的方法防止突水突泥再次发生,为隧洞突水突泥次生灾害处置提供经验指导。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郝俊锁
刘俊峰
刘浩
赵明蕃
关键词:  地下工程  突水突泥  次生灾害  致灾构造识别  灾害预防与控制    
Abstract: In order to explore the main influencing factors and control methods of secondary disasters of water and mud inrush in underground engineering, the prevention and control technology of secondary disasters of water and mud inrush was proposed by summarizing relevant cases since 2010 and the disaster-inducing environment and factors were summarized. Taking the secondary water and mud inrush of Shizishan Tunnel crossing FⅢ-71 fault in central Yunnan as an example, the causes of disasters in this geological section were explored, and the evolution process of secondary disasters was divided into three stages: gestation stage, latent stage and induction stage. The methods of improving the state of the external environment, blocking the evolution path of the disaster and increasing the bearing capacity of the anti-outburst layer were put forward to prevent the recurrence of water outburst and mud outburst, which provided experience guidance for the treatment of the secondary disaster of water outburst and mud outburst.
Key words:  underground engineering    soil-water inrush    secondary disaster    disaster-causing structure identification    disaster prevention and control
收稿日期:  2023-06-29      修回日期:  2023-08-08      发布日期:  2023-12-19     
中图分类号:  U456.3  
基金资助: 中铁十八局集团第二工程有限公司科研课题资助项目(2-JF-2021-滇中引水-2-001
作者简介:  郝俊锁(1971— ),男,内蒙古集宁人,高级工程师,主要研究方向为地下工程及隧道施工与技术管理。 E-mail:535123107@qq.com
引用本文:    
郝俊锁, 刘俊峰, 刘浩, 赵明蕃. 隧洞突水突泥次生灾害诱因与防治技术[J]. 隧道与地下工程灾害防治, 2023, 5(4): 81-92.
HAO Junsuo, LIU Junfeng, LIU Hao, ZHAO Mingfan. Inducement and prevention technology of secondary disasters of water and mud inrush in tunnel. Hazard Control in Tunnelling and Underground Engineering, 2023, 5(4): 81-92.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2023/V5/I4/81
[1] 田四明,赵勇,石少帅,等. 中国铁路隧道建设期典型灾害防控方法现状、问题与对策[J]. 隧道与地下工程灾害防治, 2019, 1(2):24-48. TIAN Siming, ZHAO Yong, SHI Shaoshuai, et al. The status, problems and countermeasures of typical disaster prevention and control methods during the construction period of Chinese railway tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(2):24-48.
[2] WANG Feiyang, ZHANG Dongming, HUANG Hongwei, et al. A phase-field-based multi-physics coupling numerical method and its application in soil-water inrush accident of shield tunnel[J]. Tunnelling and Underground Space Technology, 2023, 140:105233.
[3] 李术才, 许振浩, 黄鑫, 等. 隧道突水突泥致灾构造分类、地质判识、孕灾模式与典型案例分析[J]. 岩石力学与工程学报, 2018, 37(5):1041-1069. LI Shucai, XU Zhenhao, HUANG Xin, et al. Structural classification, geological identification, disaster-prone mode and typical case analysis of tunnel water inrush and mud outburst[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(5):1041-1069.
[4] 陈卫忠,袁敬强,黄世武,等. 富水风化花岗岩隧道突水突泥灾害防治技术[J]. 隧道与地下工程灾害防治,2019,1(3):32-38. CHEN Weizhong, YUAN Jingqiang, HUANG Shiwu, et al. Prevention and control technology of water inrush and mud outburst disaster in water-rich weathered granite tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(3):32-38.
[5] 王晓蕾,姬治岗. 破碎围岩注浆加固效果评价技术研究进展[J]. 科学技术与工程,2020,20(7):2528-2536. WANG Xiaolei, JI Zhigang. Research and application summary of grouting reinforcement effect evaluation technology for water-rich broken surrounding rock[J]. Science Technology and Engineering, 2020, 20(7):2528-2536.
[6] XU Peng, PENG Peng, WEI Ronghua, et al. Model test of the mechanism underpinning water-and-mud inrush disasters during tunnel excavation in sandstone and slate interbedded Presinian strata[J]. Journal of Zhejiang University-Science A, 2022, 23(11):882-899.
[7] GUO Jiaqi, WANG Erbo, LAI Yongbiao, et al. Study on catastrophe information characteristics of water inrush in Karst tunnel by drilling and blasting method[J]. Advances in Civil Engineering, 2022, 2022:1-23.
[8] 周新星. 隧道断层破碎带突水突泥安全防护技术案例分析[J]. 市政技术,2022,40(12):19-25. ZHOU Xinxing. Case analysis of safe protect for water and mud inrush in tunnels fault[J]. Municipal Engineering Technology, 2022, 40(12):19-25.
[9] 孙毅.隧道突涌体清淤加固关键施工参数研究[J].铁道建筑技术,2023(7):172-176. SUN Yi. Research on key construction parameters for dredging and reinforcement of tunnel inrush mud [J]. Railway Construction Technology, 2023(7):172-176.
[10] HUANG Xin, WANG Tong, XU Zhenhao, et al. Experimental study on the mechanism of intermittent water and mud inrush caused by dredging and rainfall considering sedimentary characteristics in Karst tunnels[J]. KSCE Journal of Civil Engineering, 2023, 27(5):2016-2029.
[11] WANG Yingchao, LIU Yang, ZHAO Ning, et al. Investigation on the evolution mechanism of water and mud inrush disaster in fractured rock mass of mountain tunnel[J]. Geomatics, Natural Hazards and Risk, 2022, 13(1):1780-1804.
[12] 吴培荣. 梁山隧道深埋富水陡倾软弱带突水涌泥机制分析及旋喷技术[J]. 隧道建设, 2015, 35(4):364-368. WU Peirong. Analysis on mechanism of water gushing and mud inflow when tunneling through deep-covered steep water-rich fracture zone and application of horizontal jet grouting piles:case study on Liangshan Tunnel[J]. Tunnel Construction, 2015, 35(4):364-368.
[13] 胡清顺,王和芬,唐明秀. 一起输水隧洞特大突泥涌水处理实例分析[J]. 人民长江,2017,48(9):65-69. HU Qingshun, WANG Hefen, TANG Mingxiu. Study on treatment scheme for especially serious mud and water inrush in water conveyance tunnel: case of Water Diversion Project from Niulan River to Dianchi Lake[J]. Yangtze River, 2017, 48(9):65-69.
[14] 张民庆,何志军,黄鸿健,等. 兰新二线大梁隧道突水突泥原因分析与治理[J]. 铁道工程学报,2015,32(3):77-80. ZHANG Minqing, HE Zhijun, HUANG Hongjian, et al. Causal analysis and governance of the water & mud bursting in Daliang Tunnel on Lanzhou-Xinjiang Second Railway[J]. Journal of Railway Engineering Society, 2015, 32(3):77-80.
[15] 袁永才,李术才,李利平,等. 尚家湾强岩溶隧道突水突泥伴生灾害源综合分析[J]. 中南大学学报(自然科学版),2017,48(1):203-211. YUAN Yongcai, LI Shucai, LI Liping, et al. Comprehensive analysis on disaster associated by water inrush and mud gushing in Shangjiawan Karst Tunnel[J]. Journal of Central South University(Science and Technology), 2017, 48(1):203-211.
[16] 林承华,尹术军. 盘岭公路隧道涌水突泥治理措施[J]. 交通科技, 2014(2):108-111. LIN Chenghua, YIN Shujun. The treatment measures of water bursting and mud gushing of Panling Highway Tunnel[J]. Transportation Science & Technology, 2014(2):108-111.
[17] 陈发达,周火锋,方伟立,等. 某轨道交通1号线雅蛮区间隧道岩溶突泥突水处治对策分析[J]. 铁道标准设计,2016,60(6):95-99. CHEN Fada, ZHOU Huofeng, FANG Weili, et al. Study on treatment countermeasures against water and mud gushing in manpo station[J]. Railway Standard Design, 2016, 60(6):95-99.
[18] 林晓青,皮亮. 莲花山1号特长隧道ZK190+640—ZK190+625段破碎带突泥处理施工技术[J]. 广东公路交通,2016, 42(4):92-96. LIN Xiaoqing, PI Liang. Construction technology for mud bursting treatment in fracture zone(ZK190+640—ZK190+625)of Lianhuashan No.1 Tunnel[J]. Guangdong Highway Communications, 2016, 42(4):92-96.
[19] 唐勃. 荆西隧道涌水突泥综合整治处理[J]. 中华建设,2020(5):104-105. TANG Bo. Comprehensive treatment of water inrush and mud outburst in Jingxi Tunnel[J]. China Construction, 2020(5):104-105.
[20] 张建昆. 拉林高原铁路藏噶隧道突水突泥综合处治技术[J]. 企业技术开发, 2018(1):21-26. ZHANG Jiankun. The integrated treatment technology of the water & mud bursting in Zangga Tunnel of the Lalin Plateau Railway[J]. Technological Development of Enterprise, 2018(1):21-26.
[21] 陈俊武,李国锋,王明江,等. 云南南景高速阿比村隧道加宽带突泥涌水原因分析与处治技术[J]. 现代隧道技术,2022,59(增刊1):858-865. CHEN Junwu, LI Guofeng, WANG Mingjiang, et al. Cause analysis and treatment technology for mud-and water gushing at widened section of Abicun Tunnel on Yunnan Nanjing Expressway[J]. Modern Tunnelling Technology, 2022, 59(Suppl.1):858-865.
[22] 林克. 丽香铁路花椒坡隧道断层破碎带突泥涌水处治技术[J]. 国防交通工程与技术,2022,20(1):59-62. LIN Ke. Treatment technology of mud and water inrush in fault fracture zone of Huajiaopo Tunnel of Lijiang-shangri-la Railway[J]. Traffic Engineering and Technology for National Defense, 2022, 20(1):59-62.
[23] 刘新有,胡开富,张文涛,等. 滇中引水工程白云岩砂化隧洞涌水突泥处理研究[J]. 人民长江,2022,53(9):102-108. LIU Xinyou, HU Kaifu, ZHANG Wentao, et al. Treatment of mud and water inrush in sanded-dolomite tunnel of Central Yunnan Water Diversion Project[J]. Yangtze River, 2022, 53(9):102-108.
[24] 李晓昭,黄震,许振浩,等. 隧道突水突泥致灾构造及其多尺度精细观测技术[J]. 中国公路学报, 2018, 31(10):79-90. LI Xiaozhao, HUANG Zhen, XU Zhenhao, et al. Hazard-causing structures for water and mud inrush in tunnels and the corresponding detailed, multiscale observation technology[J]. China Journal of Highway and Transport, 2018, 31(10):79-90.
[25] 郝俊锁,刘俊峰,邱志洪,等. 狮子山隧洞穿越P2β3地层向斜构造突水突泥灾害源探测及致灾机理分析[J].施工技术(中英文),2022,51(18):78-84. HAO Junsuo, LIU Junfeng, QIU Zhihong, et al. Source detection of water-mud inrush of Shizishan Tunnel through P2β3 stratigraphic syncline structure and disaster-causing mechanism analysis[J]. Construction Technology, 2022, 51(18):78-84.
[26] 张鹏. 运营铁路岩溶隧道突涌水灾害原因分析与处治技术[J]. 国防交通工程与技术,2022,20(6):46-51. ZHANG Peng. Cause analysis and treatment technology of water inrush disaster of Karst tunnels in operating railway[J]. Traffic Engineering and Technology for National Defense, 2022, 20(6):46-51.
[27] 夏沅谱,董鑫,熊自明,等. 基于剪切破坏的深长隧道掌子面隔水岩层安全厚度的研究[J]. 水文地质工程地质, 2018, 45(5):57-66. XIA Yuanpu, DONG Xin, XIONG Ziming, et al. A study of the safety thickness of water-resisting rock strata in a deep-buried and long tunnel based on shear failure[J]. Hydrogeology and Engineering Geology, 2018, 45(5):57-66.
[28] 江勇顺,付振华,李天斌,等. 基于圆形薄板力学模型的隧道隔水岩墙弯曲破坏涌水机制分析[J]. 现代隧道技术, 2018, 55(3):146-152. JIANG Yongshun, FU Zhenhua, LI Tianbin, et al. Mechanism of tunnel water inflow caused by bending failure of a waterproof dike based on a circular thin plate mechanical model[J]. Modern Tunnelling Technology, 2018, 55(3):146-152.
[29] 武世燕. 岩溶区隧道隔水岩盘安全厚度预测[J]. 隧道建设(中英文), 2021, 41(12):2083-2092. WU Shiyan. Prediction of safe thickness of water-insulating rock disks in tunnels in Karst areas[J]. Tunnel Construction, 2021, 41(12):2083-2092.
[30] 孟凡树,王迎超,焦庆磊,等. 断层破碎带突水最小安全厚度的筒仓理论分析[J]. 哈尔滨工业大学学报, 2020, 52(2):89-95. MENG Fanshu, WANG Yingchao, JIAO Qinglei, et al. Analysis of the minimum safe thickness of water inrush in fault fracture zone based on the silo theory[J]. Journal of Harbin Institute of Technology, 2020, 52(2):89-95.
[31] 中国煤炭建设协会.煤矿井巷工作面注浆工程施工与验收规范:NB/T 51030—2015 [S].北京:煤炭工业出版社,2015.
[32] 祝俊,梁军林,容洪流,等. 富水全强风化花岗岩隧道突水突泥灾害机制与帷幕注浆技术[J]. 科学技术与工程, 2020, 20(26):10918-10926. ZHU Jun, LIANG Junlin, RONG Hongliu, et al. Water and mud inrush disaster mechanism and curtain grouting technology on granite tunnel with rich water and strong weathering[J]. Science Technology and Engineering, 2020, 20(26):10918-10926.
[33] 王松,周勇,杨涛,等,软弱富水风化岩地层隧道注浆加固机理与参数优化研究[J]. 市政技术,2022,40(3):96-101. WANG Song, ZHOU Yong, YANG Tao, et al. Research on grouting mechanism and parameter optimization of tunnels in water-rich soft weathered rock stratum[J]. Municipal Engineering Technology, 2022, 40(3):96-101.
[34] 郝俊锁. 引水隧洞突涌段变形特征及控制关键技术研究[J]. 铁道建筑技术, 2022(2):99-103. HAO Junsuo. Deformation characteristics and key control techniques of diversion tunnel inrush section[J]. Railway Construction Technology, 2022(2):99-103.
[35] 长江勘测规划设计研究有限责任公司, 长江空间信息技术工程有限公司(武汉).水利水电工程安全监测设计规范:SL725—2016[S]. 北京:中国水利水电出版社,2016.
[1] 仇文革, 黄海昀, 闫飞跃, 孙克国. 基于能量原理的上覆饱水砂层隧道突水灾变[J]. 隧道与地下工程灾害防治, 2021, 3(1): 1-11.
[2] 陈卫忠, 袁敬强, 黄世武, 杨磊. 富水风化花岗岩隧道突水突泥灾害防治技术[J]. 隧道与地下工程灾害防治, 2019, 1(3): 32-38.
[3] 戎晓力,文祝,郝以庆,卢浩,熊自明. 基于可能性理论的地下工程风险裕度模型[J]. 隧道与地下工程灾害防治, 2019, 1(2): 83-91.
[4] 张庆松, 张连震, 李鹏, 冯啸. 地下工程富水软弱地层注浆加固理论研究新进展[J]. 隧道与地下工程灾害防治, 2019, 1(1): 47-57.
[1] QIAN Qihu. Scientific use of the urban underground space to construction the harmonious livable and beautiful city[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 1 -7 .
[2] DENG Mingjiang, LIU Bin. Challenges, countermeasures and development direction of geological forward-prospecting for TBM cluster tunneling in super-long tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 8 -19 .
[3] DING Xiuli, ZHANG Yuting, ZHANG Chuanjian, YAN Tianyou, HUANG Shuling. Review on countermeasures and their adaptability evaluation to tunnels crossing active faults[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 20 -35 .
[4] JIAO Yuyong, ZHANG Weishe, OU Guangzhao, ZOU Junpeng, CHEN Guanghui. Review of the evolution and mitigation of the water-inrush disaster in drilling-and-blasting excavated deep-buried tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 36 -46 .
[5] ZHANG Qingsong, ZHANG Lianzhen, LI Peng, FENG Xiao. New progress in grouting reinforcement theory of water-rich soft stratum in underground engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 47 -57 .
[6] XIA Kaiwen, XU Ying, CHEN Rong. Dynamic tests of rocks subjected to simulated deep underground environments[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 58 -75 .
[7] HONG Kairong. Study on rock breaking and wear of TBM hob in high-strength high-abrasion stratum[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 76 -85 .
[8] TAN Zhongsheng. Application experimental study of high-strength lattice girders with heat treatment in tunnel engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 86 -92 .
[9] CHEN Jianxun, LUO Yanbin. The stability of structure and its control technology for lager-span loess tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 93 -101 .
[10] JING Hongwen, YU Liyuan, SU Haijian, GU Jincai, YIN Qian. Development and application of catastrophic experiment system for water inrush in surrounding rock of deep tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 102 -110 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn