Please wait a minute...
 
隧道与地下工程灾害防治  2024, Vol. 6 Issue (1): 24-35    DOI: 10.19952/j.cnki.2096-5052.2024.01.03
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
水封洞库地下水位监测资料分析与利用
张宜虎1,刘倩1*,高锡敏2,丁长栋1,罗荣1,胡伟1
1.长江科学院水利部岩土力学与工程重点实验室, 湖北 武汉 430010;2.中国石化管道储运有限公司, 江苏 徐州 221008
Analysis and utilization of groundwater level monitoring data of underground water-sealed caverns
ZHANG Yihu1, LIU Qian1*, GAO Ximin2, DING Changdong1, LUO Rong1, HU Wei1
1. Key Laboratory of Geotechnical Mechanics and Engineering of Ministry of Water Resources, Changjiang River Scientific Research Institute, Wuhan 430010, Hubei, China;
2. Sinopec Pipeline Storage and Transportation Co., Ltd., Xuzhou 221008, Jiangsu, China
下载:  PDF (11272KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 基于国内某大型水封洞库工程2015—2020年35个监测孔的地下水位监测资料,综合考虑库区施工进度及前期勘测获取的地质构造信息,系统分析库区地下水位的变化特征及变化原因,揭示地下洞室开挖与人工水幕系统对洞库区地下水位的影响以及库区可能存在的水封性不足的风险区域。根据地下水位时序变化与施工进度的对应关系,洞库区地下水位动态变化主要分为3类:水位基本稳定型、水位下降与邻近洞段开挖时间对应型、水位下降晚于邻近洞段开挖时间型。结合监测孔的空间分布及地下洞室施工进度发现:地下洞室开挖后库区整体地下水位均有所降低,但大部分区域在安全水位(-25 m)以上,人工水幕系统作用显著;西南侧局部区域地下水位受断层F2和F3以及节理裂隙密集带L4和L8的影响,在监测末期仍远低于安全水位(-25 m),存在水封性不足的风险。库区地下水位的动态变化特征与地下洞室的施工进度和质量联系紧密,地下水位的系统监测与及时分析反馈十分必要,亟需编制水封洞库地下水监测专项规范,推动水封洞库工程的全过程、全覆盖地下水位监测,提高水封洞库工程的施工效率。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张宜虎
刘倩
高锡敏
丁长栋
罗荣
胡伟
关键词:  水封洞库  地下水位监测  资料利用  水封性  人工水幕系统    
Abstract: Based on groundwater level data of 35 monitoring boreholes from 2015 to 2020 obtained from a large-scale underground water-sealed cavern project, the characteristics and causes of the changes in the groundwater level were systematically analyzed. Taking the construction progress of each cavern unit and geological structure information obtained from previous survey into account, those monitoring data revealed the influence of underground cavern excavation and artificial water curtain system on groundwater level, and the possible risk areas of low water pressure. According to the corresponding relationship between the temporal changes of groundwater level and construction progress, the monitoring boreholes could be divided into three types: water level maintains relatively stable,water level declines when adjacent tunnels were excavated; water level declines far after the adjacent tunnels were excavated. Combined with the spatial distribution of boreholes and the construction progress of underground caverns, it could be found that the groundwater level in the overall study area declined after the excavation of the underground caverns. However, benefited by the artificial water curtain, groundwater level in most area maintained higher than the safe water level(-25 m). Affected by faults F2, F3 and joint fracture zones L4, L8, local groundwater level in the southwest was still far below the safe water level(-25 m)at the end of monitoring, and it indicated a risk of insufficient water sealing. It indicated that the dynamics of the groundwater level in the study area was closely related to the construction progress and quality of the underground caverns, and the systematic monitoring of the groundwater level and timely analysis and feedback were essential. It is urgent to compile a specification for the underground water monitoring of the water-sealed cavern to promote more systematic monitoring of groundwater and improve the construction efficiency of the project.
Key words:  water-sealed cavern    groundwater level monitoring    data utilization    water sealing property    artificial water curtain systemReceived: 2023-11-28    Revised: 2024-01-10    Accepted: 2024-01-15    Published: 2024-03-20
发布日期:  2024-04-10     
中图分类号:  TE822  
基金资助: 中央级公益性科研院所基本科研业务费资助项目(CKSF2023319/YT,CKSF20231027/YT,CKSF2023310/YT);国家自然科学基金资助项目(52309123)
作者简介:  张宜虎(1979— ),男,湖北松滋人,教授级高级工程师,博士,主要研究方向为岩土工程、地下工程等. E-mail:58854062@qq.com. *通信作者简介:刘倩(1992— ),女,湖北仙桃人,工程师,博士,主要研究方向为水文地质学、地下水数值模拟等. E-mail:liuqian31@foxmail.com
引用本文:    
张宜虎,刘倩,高锡敏,丁长栋,罗荣,胡伟. 水封洞库地下水位监测资料分析与利用[J]. 隧道与地下工程灾害防治, 2024, 6(1): 24-35.
ZHANG Yihu, LIU Qian, GAO Ximin, DING Changdong, LUO Rong, HU Wei. Analysis and utilization of groundwater level monitoring data of underground water-sealed caverns. Hazard Control in Tunnelling and Underground Engineering, 2024, 6(1): 24-35.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2024/V6/I1/24
[1] ÅBERG B. Model tests on oil storage in unlined rock caverns[M] // BERGMAN M. Storage in Excavated Rock Caverns: Rockstore 77: Proceedings of the First International Symposium, Stockholm, 5-8 September 1977. Oxford: Pergamon Press, 1978: 517-530.
[2] WANG Z C, LI W, LI Z, et al. Groundwater response to oil storage in large-scale rock caverns with a water curtain system: site monitoring and statistical analysis[J]. Tunnelling and Underground Space Technology, 2020, 99: 103363.
[3] ZHANG Q H, LIU Q B, SU A J, et al. Hydraulic conductivity of rock masses surrounding water curtain boreholes for underground oil storage caverns[J]. Energies(Basel), 2021,14(15):4588.
[4] ÅBERG B. Prevention of gas leakage from unlined reservoirs in rock[M] // BERGMAN M. Storage in Excavated Rock Caverns: Rockstore 77: Proceedings of the First International Symposium, Stockholm, 5-8 September 1977. Oxford: Pergamon Press, 1978: 399-413.
[5] GOODALL D C, ÅBERG B, BREKKE T L. Fundamentals of gas containment in unlined rock caverns[J]. Rock Mechanics and Rock Engineering, 1988, 21(4): 235-258.
[6] LIANG J, LINDBLOM U. Analyses of gas storage capacity in unlined rock caverns[J]. Rock Mechanics and Rock Engineering, 1994, 27(3): 115-134.
[7] The British Standards Institution. Gas infrastructure-underground gas storage-part 4: functional recommendations for storage in rock caverns: BS/EN 1918-4: 2016[S]. London:BSI Standards Institution, 2016.
[8] 中国石油化工集团有限公司. 地下水封石洞油库设计标准: GB/T 50455—2020[S]. 北京: 中国计划出版社, 2020.
[9] 中石化上海工程有限公司.地下水封石洞油库水幕系统设计规范: SH/T 3211—2020[S]. 北京: 中国石化出版社,2020.
[10] WANG Z C, LI S C, QIAO L P. Design and test aspects of a water curtain system for underground oil storage caverns in China[J]. Tunnelling and Underground Space Technology, 2015, 48: 20-34.
[11] S. DI GIANDOMENICO. GKF/I/D/0002 GEOSTOCK 地下工程通用规范 GSU-21 洞库验收及第一次LPG入库[S].索奕,译. [S.l.] : [s.n.] , 2005.
[12] LEE C I, SONG J J. Rock engineering in underground energy storage in Korea[J]. Tunnelling and Underground Space Technology, 2003, 18(5): 467-483.
[13] 蒋中明, 肖喆臻, 唐栋, 等. 基于裂隙渗流效应的水封油库涌水量预测分析[J]. 岩土力学, 2022, 43(4): 1041-1047. JIANG Zhongming, XIAO Zhezhen, TANG Dong, et al. Prediction of water inflow in water-sealed oil storage caverns based on fracture seepage effect[J]. Rock and Soil Mechanics, 2022, 43(4): 1041-1047.
[14] LI Z K, LU B Q, ZOU J, et al. Design and operation problems related to water curtain system for underground water-sealed oil storage caverns[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2016, 8(5): 689-696.
[15] SHI L, ZHANG B, WANG L, et al. Functional efficiency assessment of the water curtain system in an underground water-sealed oil storage cavern based on time-series monitoring data[J]. Engineering Geology, 2018, 239: 79-95.
[16] LI Z Q, XUE Y G, LIANG J Y, et al. Performance assessment of the water curtain system: a monitoring system in an underground water-sealed oil reservoir in China[J]. Bulletin of Engineering Geology and the Environment, 2020, 79(7): 3635-3648.
[17] CHUNG I M, KIM T, LEE K K, et al. Efficient method for estimating groundwater head in the vicinity of the underground gas storage caverns in fractured media[J]. Journal of Hydrologic Engineering, 2009, 14(3): 261-270.
[18] JO Y J, LEE J Y. Time series analysis of hydrologic data obtained from a man-made undersea LPG cavern[J]. Engineering Geology, 2010, 113(1/2/3/4): 70-80.
[19] KUROSE H, IKEYA S, CHANG C S, et al. Construction of Namikata underground LPG storage cavern in Japan[J]. International Journal of the JCRM, 2014, 10(2): 15-24.
[20] LI Y T, ZHANG B, WANG L, et al. Key issues in water sealing performance of underground oil storage caverns: advances and perspectives[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2023, 15(10): 2787-2802.
[21] 张奇华. 关于黄岛国家石油储备库水封效果评价和控制的几点认识[J]. 长江科学院院报, 2014, 31(8): 112-116. ZHANG Qihua. Some ideas on assessment and control of water tightness effect in Huangdao Oil Storage Cavern[J]. Journal of Yangtze River Scientific Research Institute, 2014, 31(8): 112-116.
[22] 张人权, 梁杏, 靳孟贵, 等. 水文地质学基础[M]. 6版. 北京: 地质出版社, 2011.
[23] YOSRI A, DICKSON-ANDERSON S, SIAM A, et al. Transport pathway identification in fractured aquifers: a stochastic event synchrony-based framework[J]. Advances in Water Resources, 2021, 147: 103800.
[24] MA K, ZHUANG D Y, ARGILAGA A, et al. A new approach to identifying preferential seepage channels for underground water-sealed oil storage cavern during construction[J]. Rock Mechanics and Rock Engineering, 2023, 56(9): 6395-6410.
[25] KIM T, LEE K K, KO K S, et al. Groundwater flow system inferred from hydraulic stresses and heads at an underground LPG storage cavern site[J]. Journal of Hydrology, 2000, 236(3-4): 165-184.
[1] 赵兴东, 窦翔, 李勇, 王立君. 基于Ventsim的地下水封洞库建造期通风方式优选[J]. 隧道与地下工程灾害防治, 2023, 5(1): 8-17.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn