Please wait a minute...
 
隧道与地下工程灾害防治  2023, Vol. 5 Issue (1): 8-17    DOI: 10.19952/j.cnki.2096-5052.2023.01.02
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
基于Ventsim的地下水封洞库建造期通风方式优选
赵兴东1,窦翔1,李勇2,王立君3
(1.东北大学深部金属矿采动安全实验室, 辽宁 沈阳 110819;2.中铁工程装备集团有限公司, 河南 郑州 450016;3.山东黄金集团有限公司, 山东 烟台 261400
Optimization of ventilation mode during construction of large water curtain grotto storage based on Ventsim
ZHAO Xingdong1, DOU Xiang1, LI Yong2, WANG Lijun3
1. Safety Laboratory of Deep Metal Mining, Northeastern University, Shenyang 110819, Liaoning, China;2. China Railway Engineering Equipment Group Co., Ltd., Zhengzhou 450016, Henan, China;3. Shandong Gold Group Co., Ltd., Yantai 261400, Shandong, China
下载:  PDF (3621KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对某大型地下水封洞库施工期间通风方式选择问题,依托某大型地下水封洞库通风设计,在分别比较抽出式、压入式、混合式通风方式优缺点的基础上,按照各通风方式进行风量计算,分别确定大型地下水封洞库各阶段施工的通风方式;构建某大型地下水封洞库的通风Ventsim数值仿真模型,数值模拟研究不同施工阶段下不同通风方式、风流在大型地下水封洞库的动态演化规律,并对各不同施工阶段下不同通风方式的通风效果进行对比分析,优选不同施工阶段通风方式。数值模拟结果表明,第一施工阶段最优的通风方式为压入式通风,第二施工阶段最优的通风方式为混合式通风,第三和第四施工阶段最优的通风方式为抽出式通风。验证不同施工阶段各通风方式的风阻、风量和最佳风网效率,为大型地下水封洞库施工期的通风设计提供科学依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵兴东
窦翔
李勇
王立君
关键词:  地下水封洞库  建造期  通风方式  数值模拟  风压  风阻    
Abstract: Aiming at the selection of ventilation modes during the construction of a large underground cavern storage, according to the ventilation design of a large underground cavern storage, on the basis of comparing the advantages and disadvantages of the extraction type, the press-in type and the mixed type ventilation mode, and according to each ventilation mode calculate the air volume according to the method was calculated, and the ventilation mode of each stage of the construction of the large underground cavern storage was determined. A Ventsim numerical simulation model for ventilation of a large underground cavern storage was constructed, and numerical simulations were conducted to study the dynamic evolution law of wind flow in a large underground cavern storage with different ventilation modes in different construction stages, and the differences in different construction stages were analyzed. The ventilation effects of the ventilation methods were compared and analyzed, and the ventilation methods in different construction stages were optimized. The numerical simulation results showed that the optimal ventilation mode in the first construction stage was press-in ventilation, the optimal ventilation mode in the second construction stage was mixed ventilation, and the optimal ventilation mode in the third and fourth construction stages were extraction ventilation. At the same time, it was verified that the effect of wind resistance, air volume and air network efficiency of each ventilation method in different construction stages was optimal, which provided a scientific basis for the ventilation design of large underground water-sealed caverns during the construction period.
Key words:  underground water-sealed cavern    construction period    ventilation mode    numerical simulation    wind pressure    wind resistance
收稿日期:  2022-12-29      修回日期:  2023-02-27      发布日期:  2023-03-20     
中图分类号:  X947  
基金资助: 国家自然科学基金重点资助项目(52130403);国家自然科学基金-山东联合基金资助项目(U1806208);中央高校基本科研业务费资助项目(N2001033)
作者简介:  赵兴东(1975— ),辽宁辽中人,男,博士,教授,博士生导师,主要研究方向为深部金属矿采动灾害防控研究. E-mail:zhaoxingdong@mail.neu.edu.cn
引用本文:    
赵兴东, 窦翔, 李勇, 王立君. 基于Ventsim的地下水封洞库建造期通风方式优选[J]. 隧道与地下工程灾害防治, 2023, 5(1): 8-17.
ZHAO Xingdong, DOU Xiang, LI Yong, WANG Lijun. Optimization of ventilation mode during construction of large water curtain grotto storage based on Ventsim. Hazard Control in Tunnelling and Underground Engineering, 2023, 5(1): 8-17.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2023/V5/I1/8
[1] 黄维和, 韩景宽, 王玉生, 等. 我国能源安全战略与对策探讨[J]. 中国工程科学, 2021, 23(1): 112-117. HUANG Weihe, HAN Jingkuan, WANG Yusheng, et al. Strategies and countermeasures for ensuring energy security in China[J]. Strategic Study of CAE, 2021, 23(1): 112-117.
[2] 李印, 陈雪见, 姜俊浩. 大型地下水封洞库运营期涌水量计算与注浆设计[J]. 油气储运, 2022, 41(7): 847-851. LI Yin, CHEN Xuejian, JIANG Junhao. Calculation on water inflow of large underground water-sealed storage during operation and grouting design[J]. Oil & Gas Storage and Transportation, 2022, 41(7): 847-851.
[3] 周福友, 许文年, 周正军, 等. 地下水封洞库工程施工组织设计要点分析[J]. 三峡大学学报(自然科学版), 2011, 33(6): 49-53. ZHOU Fuyou, XU Wennian, ZHOU Zhengjun, et al. Research on construction organization plan of underground water sealed storage cavern project[J]. Journal of China Three Gorges University(Natural Sciences), 2011, 33(6): 49-53.
[4] 刘更宏, 赵晓. 地下水封石油洞库施工期通风方案初探[J]. 科技视界, 2015(27): 142. LIU Genghong, ZHAO Xiao. Preliminary study on ventilation scheme of underground water-sealed oil cavern during construction[J]. Science & Technology Vision, 2015(27): 142.
[5] 聂军, 陈新. 基于Ventsim的矿井通风系统优化及应用[J]. 黄金, 2021, 42(5): 29-34. NIE Jun, CHEN Xin. Optimization and application of mine ventilation system based on Ventsim[J]. Gold, 2021, 42(5): 29-34.
[6] 姚元涛. 大型地下水封洞库通风技术研究[D]. 济南: 山东大学, 2015. YAO Yuantao. Large underground cavern ventilation technology research[D]. Jinan: Shandong University, 2015.
[7] 郑建国, 张文宇, 赵怀璞, 等. 基于Ventsim的大型矿井复杂通风系统优化[J]. 煤炭技术, 2016, 35(7): 201-203. ZHENG Jianguo, ZHANG Wenyu, ZHAO Huaipu, et al. Optimization of complex ventilation system in large-scale mine based on ventsim software[J]. Coal Technology, 2016, 35(7): 201-203.
[8] 卢辉. 基于Ventsim的富力煤矿通风系统模拟分析[J]. 云南化工, 2020, 47(7): 138-139. LU Hui. Simulation analysis of ventilation system in Fuli coal mine based on Ventsim[J]. Yunnan Chemical Technology, 2020, 47(7):138-139.
[9] 中国石油化工集团公司.地下水封石洞油库设计规范:GB/T 50455—2020[S].北京:中国计划出版社,2020.
[10] 王明建, 陈健, 黄文争. 基于Ventsim仿真系统的矿井通风系统优化[J]. 煤,2021,30(1):51-54. WANG Mingjian, CHEN Jian, HUANG Wenzheng. Optimization of mine ventilation system based on ventsim simulation system[J]. Coal, 2021, 30(1): 51-54.
[11] 田应平. 浅析掘进通风除尘技术及其应用[J]. 科技创新与应用, 2017(16): 159. TIAN Yingping. Analysis on ventilation and dust removal technology in tunneling and its application[J]. Technology Innovation and Application, 2017(16): 159.
[12] 金波.长距离掘巷前压后抽混合式通风数值模拟研究[D].赣州:江西理工大学,2015. JIN Bo. Numerical simulation research on front pressing back pumping mixed ventilation for long distance excavation roadways[D]. Ganzhou: Jiangxi University of Science and Technology, 2015.
[13] 陈浩,陈宜华,胡秀林,等. 基于Ventsim的深井金属矿山通风系统优化[J]. 工业安全与环保,2018,44(4): 30-33. CHEN Hao, CHEN Yihua, HU Xiulin, et al. Ventilation system optimization of deep well metal mine based on ventsim[J]. Industrial Safety and Environmental Protection, 2018, 44(4):30-33.
[14] 仇玉良,李宁军,谢永利. 喷射混凝土衬砌隧道通风阻力系数测试研究[J].中国公路学报, 2005,18(1): 81-84. QIU Yuliang, LI Ningjun, XIE Yongli. Site test for ventilation resistance coefficient of shotcrete lining tunnel[J]. China Journal of Highway and Transport, 2005, 18(1): 81-84.
[15] 吴世宽. Ventsim通风软件在某矿山通风中的应用[J]. 甘肃冶金,2021,43(3): 5-8. WU Shikuan. Application of ventsim ventilation software in mine ventilation[J]. Gansu Metallurgy, 2021, 43(3): 5-8.
[16] 邬长福, 金波, 陈祖云, 等. 掘进巷道混合式通风数值模拟研究[J]. 有色金属(矿山部分), 2015, 67(1): 69-73. WU Changfu, JIN Bo, CHEN Zuyun, et al. Numerical simulation on combined ventilation in excavation roadway[J]. Nonferrous Metals(Mining Section), 2015, 67(1): 69-73.
[17] 杨立新. 通风管路末段百米漏风率与有关的风量计算[J]. 岩土工程界, 2000(11): 43-47. YANG Lixin. Air leakage ratio of 100 m end of ventilation duct line & related air quantity calculation[J]. Geological Exploration for Non-Ferrous Metals, 2000(11): 43-47.
[1] 孙港, 王军祥, 孟祥竹, 郭连军, 孙杰. 基于近场动力学理论的岩石双孔爆破动态断裂行为数值模拟[J]. 隧道与地下工程灾害防治, 2023, 5(2): 42-58.
[2] 黄兴, 张炜, 殷建钢, 施皓, 张晓磊. 填埋场扩建后下穿隧道结构的安全性[J]. 隧道与地下工程灾害防治, 2023, 5(1): 55-63.
[3] 党晓宇, 马劲松. 基于桩板组合结构等代仰拱的公路隧道加固方案[J]. 隧道与地下工程灾害防治, 2023, 5(1): 90-96.
[4] 关振长,周宇轩,吕春波,吕荔炫. 空气间隔装药周边眼爆破精细化数值模拟[J]. 隧道与地下工程灾害防治, 2022, 4(4): 11-19.
[5] 黄昕,谷冠思,张子新,李昀. 考虑渗流的泥水平衡盾构隧道稳定性数值模拟[J]. 隧道与地下工程灾害防治, 2022, 4(2): 28-38.
[6] 李相兵,梁波,鲁思源. 考虑多因素影响的双侧壁导坑法施工参数研究[J]. 隧道与地下工程灾害防治, 2022, 4(2): 39-48.
[7] 石宗涛. 济南黄河隧道泥水盾构开挖面稳定性分析[J]. 隧道与地下工程灾害防治, 2022, 4(1): 71-77.
[8] 李钊, 梁庆国, 孙文, 曹小平. 隧道台阶法施工上台阶长度对隧道变形的影响[J]. 隧道与地下工程灾害防治, 2022, 4(1): 55-62.
[9] 曹成威, 石钰锋, 徐长节, 侯世磊, 龚宏华, 纪松岩. 某明挖深基坑地下连续墙非对称配筋优化设计[J]. 隧道与地下工程灾害防治, 2022, 4(1): 63-70.
[10] 房倩, 杜建明, 王赶, 杨晓旭. 模型边界对圆形隧道开挖引起地表沉降的影响分析[J]. 隧道与地下工程灾害防治, 2022, 4(1): 10-17.
[11] 夏英杰, 孟庆坤, 唐春安, 张永彬, 赵丹晨, 赵振兴. 岩石破裂过程分析方法在隧道工程模拟中的应用[J]. 隧道与地下工程灾害防治, 2021, 3(3): 36-49.
[12] 黄笑, 肖培伟, 董林鹭, 杨兴国, 徐奴文. 高地应力地下洞室群开挖过程岩体力学响应及破坏机制[J]. 隧道与地下工程灾害防治, 2021, 3(3): 85-93.
[13] 张鸿勇, 张艳杰, 刘春, 施斌, 曹政. 基于离散元孔隙密度流法的地铁隧道收敛变形注浆整治分析[J]. 隧道与地下工程灾害防治, 2021, 3(3): 100-110.
[14] 赵高峰,徐志超,郝益民,扈晓冬,邓稀肥. 基于4D-LSM的隧道围岩爆破振动和损伤判定研究[J]. 隧道与地下工程灾害防治, 2021, 3(3): 11-19.
[15] 乔雄,倪伟淋,骆维斌,刘文高. 三车道公路岩土混合隧道单侧壁导坑法快速施工[J]. 隧道与地下工程灾害防治, 2021, 3(2): 33-42.
[1] QIAN Qihu. Scientific use of the urban underground space to construction the harmonious livable and beautiful city[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 1 -7 .
[2] ZHOU Caigui, LI Jing, LIANG Qingguo, CHEN Kelin. Comparison of water inflow prediction methods of hydraulic diversion tunnels during construction[J]. Hazard Control in Tunnelling and Underground Engineering, 2023, 5(1): 32 -44 .
[3] LIN Ying, WANG Guobo, SHI Longfei, WANG Jianning. Seismic Response Study of Close Space Curve Tunnel Cluster[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -0 .
[4] YU Haisui, ZHUANG Peizhi. Cavity contraction theory and its application to tunnelling[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(4): 13 -32 .
[5] LIU Run, HUANG Xuanzhi, YUAN Yu, MA Pengcheng. Study of soil degradation effects on offshore wind turbine with large-diameter pile foundation[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(4): 56 -63 .
[6] HAN Guiwu, GUO Shutai, ZHOU Rou. Research and application of coal mine roadway oil storage technology system[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 .
[7] ZONG Junliang, RAO Qian, WANG Qi, YU Haitao. Numerical simulation of the dynamic response of ground penetrating ultra shallow-buried shield tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 .
[8] ZHENG Yingren, WANG Yongfu. Stability analysis and design method of tunnel surrounding rock[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(4): 1 -12 .
[9] ZHUANG Haiyang, FU Jisai, ZHU Mingxuan, CHEN Su, CHEN Guoxing. Seismic performance of underground subway station with elastic slipping bearing fixed on the top of columns[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(3): 57 -67 .
[10] ZUO Yujun, WAN Ruzhen, SUN Wenjibin, LIU Hao, LIN Jianyun, LOU Yili. The influence of different excavation methods on the stability of surrounding rock of tunnel in coal-bearing strata[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(4): 64 -74 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn