Please wait a minute...
 
隧道与地下工程灾害防治  2024, Vol. 6 Issue (1): 36-44    DOI: 10.19952/j.cnki.2096-5052.2024.01.04
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
扩建洞库爆破振动对运营洞库稳定性影响
王敬奎1,彭建宇2,王者超2,李康林2
1.中海油石化工程有限公司, 山东 青岛 266101;2.东北大学深部工程与智能技术研究院, 辽宁 沈阳 110819
The influence of blasting vibration of extended cavern on the stability of operating cavern
WANG Jingkui1, PENG Jianyu2, WANG Zhechao2, LI Kanglin2
1. CNOOC Petrochemical Engineering Co., Ltd., Qingdao 266101, Shandong, China;
2. Institute of Deep Engineering and Intelligent, Northeastern University, Shenyang 110819, Liaoning, China
下载:  PDF (9553KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 为确保已建运营洞库的稳定性,对邻近扩建洞库钻爆法开挖进行爆破振动分析,明确其对已建运营洞库稳定性的影响。依托国内某地下水封洞库工程,采用LS-DYNA建立三维数值计算模型,开展爆破振动模拟,并通过峰值振速、有效应力等评价其对运营洞库影响。研究结果表明:主洞室1监测点振速为0.1~0.8 cm/s,主洞室2监测点振速为0.045~0.350 cm/s,且最大峰值速度出现在与波的传播方向较为一致的方向;最大单段炸药量影响峰值振速(合速度)和有效应力,炸药量越多,振速和有效应力越高,最大峰值振速可增大200%;在最大单段炸药量小于65 kg的条件下,距爆源最近处的有效应力和合速度均小于安全规程规定,扩建洞库爆破施工对运营洞库影响较小,无安全隐患。结合现场爆破振动监测数据,验证了此模拟结果的正确性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王敬奎
彭建宇
王者超
李康林
关键词:  扩建洞库  爆破振动  稳定性  最大单段炸药量    
Abstract: In order to ensure the stability of the existing operation cavern, the blasting vibration analysis of the drilling and blasting excavation of the adjacent expansion cavern was carried out to clarify its influence on the stability of the existing operation cavern. Based on a domestic underground water-sealed cavern project, ANSYS/LS-DYNA was used to establish a three-dimensional numerical calculation model to carry out blasting vibration simulation, and its impact on the operating cavern was evaluated by peak vibration velocity and effective stress. The results showed that the vibration velocity of the monitoring point in the main cavern 1 was 0.1-0.8 cm/s, and the vibration velocity of the monitoring point in the main cavern 2 was 0.045-0.350 cm/s, and the maximum peak velocity appeared in the direction that was consistent with the propagation direction of the wave. The maximum single-stage explosive quantity affected the peak vibration velocity(combined velocity)and effective stress. The more the explosive quantity, the higher the vibration velocity and effective stress, peak vibration velocity could be increased by up to 200%. Under the condition that the maximum single-stage explosive quantity was less than 65 kg, the effective stress and the combined velocity at the nearest distance from the explosion source were less than the values specified in the safety regulations. The blasting construction of the expansion cavern had little impact on the operating cavern and had no potential safety hazard. Combined with the on-site blasting vibration monitoring data, the correctness of the simulation results was verified.
Key words:  expansion cavern    blasting vibration    stability    the maximum single-stage explosive quantityReceived:2023-11-21    Revised:2024-01-31    Accepted:2024-03-01    Published:2024-03-20
发布日期:  2024-04-10     
中图分类号:  TE8  
基金资助: 国家自然科学基金面上资助项目(51779045);辽宁省“兴辽英才计划”资助项目(XLYC1807029)
作者简介:  王敬奎(1972— ),男,山东单县人,研究员,主要研究方向为地下水封洞库设计. E-mail:wjk@enpal.cn
引用本文:    
王敬奎,彭建宇,王者超,李康林. 扩建洞库爆破振动对运营洞库稳定性影响[J]. 隧道与地下工程灾害防治, 2024, 6(1): 36-44.
WANG Jingkui, PENG Jianyu, WANG Zhechao, LI Kanglin. The influence of blasting vibration of extended cavern on the stability of operating cavern. Hazard Control in Tunnelling and Underground Engineering, 2024, 6(1): 36-44.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2024/V6/I1/36
[1] 杨桂桐. 岩体的动力特性及震动波在岩体中的传播[J].金属矿山,1992(6): 33-38. YANG Guitong. Dynamic characteristics of rock mass and propagation of vibration wave in rock mass[J]. Metal Mine, 1992(6): 33-38.
[2] 徐言. 基于萨道夫斯基公式分段修正的隧道爆破振动研究[J]. 科学技术创新, 2020(21): 103-104. XU Yan. Study on blasting vibration of tunnel based on subsection correction of Sadowski formula[J]. Scientific and Technological Innovation, 2020(21): 103-104.
[3] 柴少波, 史杰辉, 阿比尔的, 等. P波入射含顺层结构面岩质边坡引起的振动[J]. 山东大学学报(工学版), 2023, 53(3): 31-40. CHAI Shaobo, SHI Jiehui, ABI Erdi, et al. Vibration caused by P-wave incident on a rock slope with a bedding structural plane[J]. Journal of Shandong University(Engineering Science), 2023, 53(3): 31-40.
[4] 顾文彬, 王振雄, 陈江海, 等. 装药结构对爆破震动能量传递及爆破效果影响研究[J]. 振动与冲击, 2016, 35(2): 207-211. GU Wenbin, WANG Zhenxiong, CHEN Jianghai, et al. Influence of charge structure on the energy transfer of blasting vibration and explosive effect[J]. Journal of Vibration and Shock, 2016, 35(2): 207-211.
[5] 宿利平, 洪政, 谷桂丽, 等. 隧道掘进水封光面爆破装药结构的优化试验研究[J].爆破器材,2023,52(5):44-49. SU Liping, HONG Zheng, GU Guili, et al. Experimental study on optimization of charge structure in water sealed smooth blasting of tunnel excavation[J]. Blasting Equipment, 2023, 52(5):44-49.
[6] 张枝伟, 雷兴海, 吴桂义, 等. 不同装药结构爆破掘进时巷道围岩损伤规律分析[J]. 煤炭工程, 2022, 54(3): 125-130. ZHANG Zhiwei, LEI Xinghai, WU Guiyi, et al. Laws of roadway surrounding rock damage in blasting excavation with different charge structures[J]. Coal Engineering, 2022, 54(3): 125-130.
[7] 刘玉丰, 方芳, 李海谦, 等. 不耦合装药结构爆炸孔壁压力分布特性的数值模拟[J]. 矿冶工程, 2022, 42(5): 30-33. LIU Yufeng, FANG Fang, LI Haiqian, et al. Numerical simulation of pressure distribution of blastholes with decoupled charges[J]. Mining and Metallurgical Engineering, 2022, 42(5): 30-33.
[8] 苟倩倩, 赵明生, 张光雄, 等. 装药结构对爆破振动能量传递的影响研究[J]. 爆破, 2020, 37(1): 61-67. GOU Qianqian, ZHAO Mingsheng, ZHANG Guangxiong, et al. Effect of charge structure on energy transfer of blasting vibration[J]. Blasting, 2020, 37(1): 61-67.
[9] 宁光忠, 胡泉光, 闫肖, 等. N-J水电站岩爆区应力释放孔预裂控制的爆破分析[J]. 山东大学学报(工学版), 2017, 47(2): 41-46. NING Guangzhong, HU Quanguang, YAN Xiao, et al. Analysis of pre-splitting blasting in rock burst area of N-J Hydropower Station[J]. Journal of Shandong University(Engineering Science), 2017, 47(2): 41-46.
[10] 薛冰, 凌静, 陈华东, 等. 单基发射药与乳化炸药爆破振动特性对比研究[J]. 爆破, 2022, 39(3): 145-150. XUE Bing, LING Jing, CHEN Huadong, et al. Comparative study on blasting vibration characteristics of single-base gun propellant and emulsion explosive[J]. Blasting, 2022, 39(3): 145-150.
[11] 符淋坤, 成传欢, 李鹏, 等. 湛江国储地下水封洞库工程主洞室顶拱层开挖爆破试验研究[J]. 长江科学院院报, 2018, 35(8): 145-150. FU Linkun, CHENG Chuanhuan, LI Peng, et al. Blasting tests of vault layer excavation in water sealed underground caverns of Zhanjiang National Petroleum Storage Projec[J]. Journal of Yangtze River Scientific Research Institute, 2018, 35(8): 145-150.
[12] 梁琨, 王树欣, 张宪堂, 等. 大跨度小净距隧道爆破振动响应研究[J]. 爆破, 2021, 38(2): 67-72. LIANG Kun, WANG Shuxin, ZHANG Xiantang, et al. Response of large-span tunnel to blasting vibration of small clear spacing tunnel excavation[J]. Blasting, 2021, 38(2): 67-72.
[13] 涂颖, 杨建华, 代金豪. 大型地下洞室上层爆破开挖对下层围岩振动特性的影响[J]. 长江科学院院报, 2020, 37(9): 110-114. TU Ying, YANG Jianhua, DAI Jinhao. Vibration characteristics of lower rock masses during blasting excavation of upper layers in a large underground cavern[J]. Journal of Yangtze River Scientific Research Institute, 2020, 37(9): 110-114.
[14] 郭伟平. 爆破振动对邻近既有隧道的影响[J].施工技术,2020,49(21): 81-84. GUO Weiping. Influence of blasting vibration on adjacent existing tunnel[J]. Construction Technology, 2020, 49(21): 81-84.
[15] 汪平, 吉凌. 浅埋地铁隧道爆破振动速度传播规律及预测[J].工程爆破,2021,27(2): 108-113. WANG Ping, JI Ling. Propagation law and prediction of blasting vibration velocity of shallow buried subway tunnel[J]. Engineering Blasting, 2021, 27(2): 108-113.
[16] YUAN P, XU Y, ZHENG Z T. Time-frequency analyses of blasting vibration signals in single-hole blasting model experiments[J]. Journal of Vibro Engineering, 2017, 19(1): 363-375.
[17] GUO J, GAN D Q, TAN J, et al. Analysis on monitor and experiment of blasting vibration for Sijiaying Iron Mine[J]. Applied Mechanics and Materials, 2012, 214: 407-411.
[18] 崔浩, 郭锐, 宋浦, 等. 基于遗传算法辨识炸药JWL状态方程参数的研究[J]. 振动与冲击, 2022, 41(9): 174-180. CUI Hao, GUO Rui, SONG Pu, et al. Identification of parameters of explosive JWL state equation basedon genetic algorithm[J]. Journal of Vibration and Shock, 2022, 41(9): 174-180.
[19] 朱必勇, 焦文宇, 寇向宇, 等. 基于数值模拟的预裂爆破参数优化研究[J].有色金属(矿山部分),2019,71(4): 32-36. ZHU Biyong, JIAO Wenyu, KOU Xiangyu, et al. Parameters optimization of pre-split blasting based on numerical simulation[J]. Nonferrous Metals(Mining Section), 2019, 71(4): 32-36.
[20] 邱薛, 刘晓辉, 胡安奎, 等. 煤岩动态RHT本构模型数值模拟研究[J/OL].煤炭学报.(2023-09-07)[2023-11-20]. https://doi.org/10.13225/j.cnki.jccs.2023.0540. QIU Xue, LIU Xiaohui, HU Ankui, et al. Numerical simulation study on dynamic RHT constitutive model of coal and rock[J/OL]. Journal of Coal Science.(2023-09-07)[2023-11-20]. https://doi.org/10.13225/j.cnki.jccs.2023.0540.
[21] 易长平, 冯林, 王刚, 等. 爆破振动预测研究综述[J]. 现代矿业, 2011(5): 1-5. YI Changping, FENG Lin, WANG Gang, et al. A review of research on blasting vibration prediction[J]. Modern Mining, 2011(5): 1-5.
[22] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 爆破安全规程: GB 6722—2014[S]. 北京: 中国标准出版社, 2015.
[1] 吕玺琳, 赵庾成, 曾盛. 砂层中盾构隧道开挖面稳定性物理模型试验[J]. 隧道与地下工程灾害防治, 2022, 4(3): 67-76.
[2] 李相兵, 梁波, 鲁思源. 考虑多因素影响的双侧壁导坑法施工参数研究[J]. 隧道与地下工程灾害防治, 2022, 4(2): 39-48.
[3] 赵文强, 周建伟, 袁兆廷, 吴铭祥, 蒋亚龙, 耿大新, 刘长红. 大跨径地下罐室穹顶预留中心岩柱开挖施工围岩稳定性模拟[J]. 隧道与地下工程灾害防治, 2022, 4(2): 81-89.
[4] 李胜, 熊自明, 刘一鸣, 李志浩. 基于改进DBSCAN算法的岩体结构面智能识别方法[J]. 隧道与地下工程灾害防治, 2022, 4(2): 49-58.
[5] 石宗涛. 济南黄河隧道泥水盾构开挖面稳定性分析[J]. 隧道与地下工程灾害防治, 2022, 4(1): 71-77.
[6] 赵兴东,李洋洋,张姝婧,陈玉民,王成龙,王玺. 超深井筒开挖扰动应力响应特征分析[J]. 隧道与地下工程灾害防治, 2020, 2(4): 19-28.
[7] 余海岁, 庄培芝. 岩土介质小孔收缩理论及其在隧道工程中的应用[J]. 隧道与地下工程灾害防治, 2019, 1(4): 13-32.
[8] 左宇军,万入祯,孙文吉斌,刘镐,林健云,娄义黎. 不同开挖工法对含煤系岩层隧道围岩稳定性影响[J]. 隧道与地下工程灾害防治, 2019, 1(4): 64-74.
[9] 高源, 杨天鸿, 辛全明, 刘飞跃. 北山隧道式大跨度地下四季滑雪场围岩稳定性研究[J]. 隧道与地下工程灾害防治, 2019, 1(3): 109-115.
[10] 闫保旭,朱万成,侯晨. 地下采场二步采充填体最大暴露高度理论分析[J]. 隧道与地下工程灾害防治, 2019, 1(2): 100-106.
[11] 陈建勋, 罗彦斌. 大跨度黄土公路隧道结构稳定性及控制技术研究[J]. 隧道与地下工程灾害防治, 2019, 1(1): 93-101.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn