Please wait a minute...
 
隧道与地下工程灾害防治  2022, Vol. 4 Issue (3): 67-76    DOI: 10.19952/j.cnki.2096-5052.2022.03.05
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
砂层中盾构隧道开挖面稳定性物理模型试验
吕玺琳1,2,赵庾成1,2,曾盛1,2
1.同济大学岩土及地下工程教育部重点实验室, 上海 200092;2.同济大学地下建筑与工程系, 上海 200092
Physical model test on the stability of tunnel face in sandy soil
LÜ Xilin1,2, ZHAO Yucheng1,2, ZENG Sheng1,2
1. Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University, Shanghai 200092, China;
2. Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China
下载:  PDF (16958KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 根据盾构隧道施工的特点并考虑水力条件变化情况,设计砂层中盾构隧道面失稳破坏物理模型试验装置。通过控制刚性支护面平移实现开挖面变形加载,量测开挖面前方土压力变化情况,并对试验过程拍摄的高精度数字图像进行图形处理追踪开挖面失稳破坏过程。开展11组物理模型试验,探讨各向同性、各向异性地层和地下水渗流条件下开挖面失稳破坏机理,得出维持开挖面稳定性的极限支护压力。研究结果表明:随着开挖面变形增大,支护压力先急速减小后趋于稳定,开挖面破坏状态呈楔形滑动块体加上方柱体的破坏模式;各向异性地层中,极限支护压力随沉积方向变化,开挖面前方地层破坏区域高度和宽度略有差异;渗流条件下,地下水渗流导致极限支护压力明显提高,开挖面破坏状态时楔形体滑动面与水平向夹角变小,破坏范围增大。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吕玺琳
赵庾成
曾盛
关键词:  盾构隧道  开挖面稳定性  模型试验  各向异性  渗流    
Abstract: According to the characteristics of shield tunnel construction and considering the hydraulic changes, a physical model test device for failure of shield tunnel face in sandy soil was designed. The displacement controlled loading of the excavation face was realized by pulling the rigid support face, and the earth pressure in front of the excavation face was measured. The high-precision digital image captured during the test was processed to track the instability process of the excavation face. 11 groups of physical model tests were carried out to investigate the failure mechanism of excavation face in isotropic and anisotropic strata and under groundwater seepage condition, and the ultimate support pressure to maintain the stability of excavation face was obtained. The results showed that with the increase of the deformation of the excavation face, the support pressure first decreased rapidly and then tended to be stable. The failure mode of the excavation face was composed of a sliding wedge and an upper prism. In anisotropic strata, the deposition direction of soil particle leaded to the variation of limit support pressure, and the height and width of loosen area in front of the excavation face changed slightly. Under seepage condition, the seepage of groundwater leaded to an obvious increase of the ultimate support pressure, the angle between the sliding surface and the horizontal in the failure state of the excavation face was small and the failure are abecomes large.
Key words:  shield tunnel    face stability    model test    anisotropy    seepage
收稿日期:  2022-01-24      修回日期:  2022-06-16      发布日期:  2022-09-20     
中图分类号:  TU431  
基金资助: 国家自然科学基金资助项目(42172300)
作者简介:  吕玺琳(1981— ),男,重庆人,博士,教授,博士生导师,主要研究方向为岩土力学与工程. E-mail:xilinlu@tongji.edu.cn
引用本文:    
吕玺琳, 赵庾成, 曾盛. 砂层中盾构隧道开挖面稳定性物理模型试验[J]. 隧道与地下工程灾害防治, 2022, 4(3): 67-76.
LÜ Xilin, ZHAO Yucheng, ZENG Sheng. Physical model test on the stability of tunnel face in sandy soil. Hazard Control in Tunnelling and Underground Engineering, 2022, 4(3): 67-76.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2022/V4/I3/67
[1] CHAMBON P,CORTÉ J F. Shallow tunnels in cohesionless soil: stability of tunnel face[J]. Journal of Geotechnical Engineering, 1994, 120(7): 1148-1165.
[2] CHEN R P, LI J, KONG L G, et al. Experimental study on face instability of shield tunnel in sand[J]. Tunnelling and Underground Space Technology, 2013, 33: 12-21.
[3] 李姣阳, 刘维, 邹金杰, 等. 浅埋盾构隧道开挖面失稳大比尺模型试验研究[J]. 岩土工程学报, 2018, 40(3): 562-567. LI Jiaoyang, LIU Wei, ZOU Jinjie, et al. Large-scale model tests on face instability of shallow shield tunnels in sand[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(3): 562-567.
[4] TAKANO D, OTANI J, NAGATANI H, et al. Application of X-ray CT on boundary value problems in geotechnical engineering: research on tunnel face failure[C] //GeoCongress 2006. Atlanta, USA: American Society of Civil Engineers, 2006: 1-6.
[5] IDINGER G, AKLIK P, WU W, et al. Centrifuge model test on the face stability of shallow tunnel[J].Acta Geotechnica, 2011, 6(2): 105-117.
[6] MA S K, DUAN Z B, HUANG Z, et al. Study on the stability of shield tunnel face in clay and clay-gravel stratum through large-scale physical model tests with transparent soil[J]. Tunnelling and Underground Space Technology, 2022, 119: 104199.
[7] 马少坤,韦榕宽,邵羽,等.基于透明土的隧道开挖面稳定性三维可视化模型试验研究及应用[J].岩土工程学报, 2021,43(10):1798-1806. MA Shaokun, WEI Rongkuan, SHAO Yu, et al. 3D visual model tests on stability of tunnel excavation surface based on transparent soil[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(10):1798-1806.
[8] LÜ X L, ZENG S, ZHAO Y C, et al. Physical model tests and discrete element simulation of shield tunnel face stability in anisotropic granular media[J]. Acta Geotechnica, 2020, 15(10): 3017-3026.
[9] BROERE W. Tunnel face stability & new CPT applications[D]. Delft, Netherlands: Delft University, 2001.
[10] PAN Q J, DIAS D. Face stability analysis for a shield-driven tunnel in anisotropic and nonhomogeneous soils by the kinematical approach[J]. International Journal of Geomechanics, 2016, 16(3): 04015076.
[11] 吕玺琳, 王浩然. 软土盾构隧道开挖面支护压力极限上限解[J]. 土木建筑与环境工程, 2011, 33(2): 65-69. LÜ Xilin, WANG Haoran. Upper bound solution of the limit support pressure during shield tunneling in soft clay[J]. Journal of Civil and Environmental Engineering, 2011, 33(2): 65-69.
[12] 袁大军,沈翔,刘学彦,等.泥水盾构开挖面稳定性研究[J].中国公路学报,2017,30(8):24-37. YUAN Dajun, SHEN Xiang, LIU Xueyan, et al. Research on excavation face stability of slurry shield tunnelling[J].China Journal of Highway and Transport, 2017, 30(8):24-37.
[13] 钱勇进,朱伟,闵凡路,等.砂卵石地层中泥膜支护土压盾构施工试验[J].中国公路学报,2017,30(8):210-215. QIAN Yongjin, ZHU Wei, MIN Fanlu, et al. Test of construction method of EPB shield with filter membrane supporting in sand and cobble stratum[J]. China Journal of Highway and Transport, 2017, 30(8):210-215.
[14] 闵凡路,徐静波,宋航标,等.反压条件下泥水盾构开挖面泥膜致密性评价试验[J].中国公路学报,2017,30(8):216-221. MIN Fanlu, XU Jingbo, SONG Hangbiao, et al. Evaluating test on compactness of filter cakes of excavation face in slurry shield under reverse water pressure[J]. China Journal of Highway and Transport, 2017, 30(8):216-221.
[15] LÜ X L, ZHOU Y C, HUANG M S, et al. Experimental study of the face stability of shield tunnel in sands under seepage condition[J]. Tunnelling and Underground Space Technology, 2018, 74: 195-205.
[16] 吕玺琳, 周运才, 李冯缔. 粉砂地层盾构隧道开挖面稳定性离心试验及数值模拟[J]. 岩土力学, 2016, 37(11): 3324-3328. LÜ Xilin, ZHOU Yuncai, LI Fengdi. Centrifuge model test and numerical simulation of stability of excavation face of shield tunnel in silty sand[J]. Rock and Soil Mechanics, 2016, 37(11): 3324-3328.
[17] LÜ X L, ZHOU Y C, HUANG M S, et al. Computation of the minimum limit support pressure for the shield tunnel face stability under seepage condition[J]. International Journal of Civil Engineering, 2017, 15(6): 849-863.
[18] LEE I M, NAM S W, AHN J H. Effect of seepage forces on tunnel face stability[J]. Canadian Geotechnical Journal, 2003, 40(2): 342-350.
[19] 乔金丽, 张义同, 高健. 考虑渗流的多层土盾构隧道开挖面稳定性分析[J]. 岩土力学, 2010, 31(5): 1497-1502. QIAO Jinli, ZHANG Yitong, GAO Jian. Stability analysis of shield tunnel face in multilayer soil with seepage[J]. Rock and Soil Mechanics, 2010, 31(5): 1497-1502.
[20] 吕玺琳, 曾盛, 王远鹏, 等. 饱和圆砾地层盾构隧道开挖面稳定性物理模型试验[J]. 岩土工程学报, 2019, 41(增刊2): 129-132. LÜ Xilin, ZENG Sheng, WANG Yuanpeng, et al. Physical model tests on stability of shield tunnel face in saturated gravel stratum[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(Suppl.2): 129-132.
[21] 石宗涛. 济南黄河隧道泥水盾构开挖面稳定性分析[J]. 隧道与地下工程灾害防治, 2022, 4(1): 71-77. SHI Zongtao. Stability analysis of slurry shield excavation face of Yellow River Tunnel in Jinan[J]. Hazard Control in Tunnelling and Underground Engineering, 2022, 4(1): 71-77.
[22] 肖鹏飞, 冯光福, 贾少东, 等. 近距离下穿车站富水圆砾地层盾构隧道开挖面稳定性研究[J]. 隧道与地下工程灾害防治, 2021, 3(1): 75-81. XIAO Pengfei, FENG Guangfu, JIA Shaodong, et al. Research on stability of excavation face of shield tunnel undercrossing station in water-rich gravel stratum[J]. Hazard Control in Tunnelling and Underground Engineering, 2021, 3(1): 75-81.
[23] 徐前卫, 朱合华, 廖少明, 等. 软土地层土压平衡盾构法施工的模型试验研究[J]. 岩土工程学报, 2007, 29(12): 1849-1857. XU Qianwei, ZHU Hehua, LIAO Shaoming, et al. Experimental study on EPB shield tunnel construction in soft ground[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(12): 1849-1857.
[24] 王磊. 福建标准砂加筋硬化与循环累积变形三轴试验及本构模型[D].杭州: 浙江大学, 2014. WANG Lei. Triaxial testing and constitutive modeling for fiberreinforcement and cyclic accumulative strain of Fujian sands[D]. Hangzhou: Zhejiang University, 2014.
[25] 吕玺琳, 王浩然, 黄茂松. 盾构隧道开挖面稳定极限理论研究[J]. 岩土工程学报, 2011, 33(1):57-62. LÜ Xilin, WANG Haoran, HUANG Maosong. Limit theoretical study on face stability of shield tunnels[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(1):57-62.
[26] 安蓉蓉. 粮食的内摩擦角、弹性模量及体变模量的实验研究[D]. 南京: 南京财经大学, 2010. AN Rongrong. Experiment study on angle of internal friction, elastic modulus and bulk strain modulus of grain[D]. Nanjing: Nanjing University of Finance & Economics, 2010.
[27] LÜ X L, HUANG M S, ANDRADE J E. Strength criterion for cross-anisotropic sand under general stress conditions[J]. Acta Geotechnica, 2016, 11(6): 1339-1350.
[28] 吕玺琳, 黄茂松, 钱建固. 层状各向异性无黏性土三维强度准则[J]. 岩土工程学报, 2011, 33(6):945-949. LÜ Xilin, HUANG Maosong, QIAN Jiangu. Three-dimensional strength criterion for layered-anisotropic cohesionless soils[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(6):945-949.
[29] LEE I M, NAM S W. The study of seepage forces acting on the tunnel lining and tunnel face in shallow tunnels[J]. Tunnelling and Underground Space Technology, 2001, 16(1): 31-40.
[1] 魏纲, 徐天宝, 张治国. 复杂应力路径下波纹钢加固盾构隧道数值分析[J]. 隧道与地下工程灾害防治, 2023, 5(2): 24-32.
[2] 王智, 刘祥勇, 朱先发, 洪小星, 沈一鸣, 张冰利. 小曲率半径隧道施工对盾构管片结构影响[J]. 隧道与地下工程灾害防治, 2023, 5(1): 45-54.
[3] 周旭明, 石钰锋, 张利敏, 张慧鹏, 曹成威, 陈昭阳. 边墙与仰拱连接处缺陷对隧道结构影响试验[J]. 隧道与地下工程灾害防治, 2023, 5(1): 74-80.
[4] 韩兴博,陈子明,苏恩杰,梁晓明,宋桂峰,叶飞. 盾构隧道围岩压力分布规律及作用模式[J]. 隧道与地下工程灾害防治, 2022, 4(4): 34-43.
[5] 喻伟,林赞权,朱彬彬,汪元冶,丁文其,乔亚飞,张晓东,龚琛杰. 盾构隧道防水密封垫材料的高温老化后性能[J]. 隧道与地下工程灾害防治, 2022, 4(4): 52-58.
[6] 赵辰洋, 罗毛毛, 邱静怡, 倪芃芃, 赵锋烽. 盾构隧道施工引起地层变形预测方法综述[J]. 隧道与地下工程灾害防治, 2022, 4(3): 31-46.
[7] 丁智, 李鑫家, 张霄. 基于机器学习的盾构掘进地表变形预测研究与展望[J]. 隧道与地下工程灾害防治, 2022, 4(3): 1-9.
[8] 潘秋景, 李晓宙, 黄杉, 汪来, 王树英, 方国光. 机器学习在盾构隧道智能施工中的应用——综述与展望[J]. 隧道与地下工程灾害防治, 2022, 4(3): 10-30.
[9] 张治国, 程志翔, 陈杰, 吴钟腾, 李云正. 盾构隧道接缝渗漏水诱发既有管线变形模型试验[J]. 隧道与地下工程灾害防治, 2022, 4(3): 77-91.
[10] 刘祥勇, 张鑫, 王军, 赵涛宁, 朱先发. 盾构施工对邻近建筑物群结构影响评价[J]. 隧道与地下工程灾害防治, 2022, 4(3): 99-106.
[11] 黄昕, 谷冠思, 张子新, 李昀. 考虑渗流的泥水平衡盾构隧道稳定性数值模拟[J]. 隧道与地下工程灾害防治, 2022, 4(2): 28-38.
[12] 许有俊, 王智广, 张旭, 郭飞, 高胜雷, 杨昆. 小转弯半径盾构隧道施工引起的地层变形特征[J]. 隧道与地下工程灾害防治, 2022, 4(2): 11-18.
[13] 陈峰军, 宗军良, 王祺, 禹海涛. 地面出入式超浅埋盾构隧道静力响应模型试验[J]. 隧道与地下工程灾害防治, 2022, 4(2): 66-72.
[14] 朱晓天. 渗流作用下粉质黏土地层超深基坑危害数值模拟分析[J]. 隧道与地下工程灾害防治, 2022, 4(2): 98-106.
[15] 周勇, 李召峰, 左志武, 王川, 王钰鑫, 林春金, 张新, 张乾青, 姚望, 王凯. 桩侧注浆提升粉质黏土地层既有桩基承载力试验研究[J]. 隧道与地下工程灾害防治, 2022, 4(1): 38-47.
[1] QIAN Qihu. Scientific use of the urban underground space to construction the harmonious livable and beautiful city[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 1 -7 .
[2] DENG Mingjiang, LIU Bin. Challenges, countermeasures and development direction of geological forward-prospecting for TBM cluster tunneling in super-long tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 8 -19 .
[3] DING Xiuli, ZHANG Yuting, ZHANG Chuanjian, YAN Tianyou, HUANG Shuling. Review on countermeasures and their adaptability evaluation to tunnels crossing active faults[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 20 -35 .
[4] JIAO Yuyong, ZHANG Weishe, OU Guangzhao, ZOU Junpeng, CHEN Guanghui. Review of the evolution and mitigation of the water-inrush disaster in drilling-and-blasting excavated deep-buried tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 36 -46 .
[5] ZHANG Qingsong, ZHANG Lianzhen, LI Peng, FENG Xiao. New progress in grouting reinforcement theory of water-rich soft stratum in underground engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 47 -57 .
[6] XIA Kaiwen, XU Ying, CHEN Rong. Dynamic tests of rocks subjected to simulated deep underground environments[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 58 -75 .
[7] HONG Kairong. Study on rock breaking and wear of TBM hob in high-strength high-abrasion stratum[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 76 -85 .
[8] TAN Zhongsheng. Application experimental study of high-strength lattice girders with heat treatment in tunnel engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 86 -92 .
[9] CHEN Jianxun, LUO Yanbin. The stability of structure and its control technology for lager-span loess tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 93 -101 .
[10] JING Hongwen, YU Liyuan, SU Haijian, GU Jincai, YIN Qian. Development and application of catastrophic experiment system for water inrush in surrounding rock of deep tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 102 -110 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn