Please wait a minute...
 
隧道与地下工程灾害防治  2024, Vol. 6 Issue (4): 90-98    DOI: 10.19952/j.cnki.2096-5052.2024.04.10
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
基于ConDenseNet架构煤岩破坏识别模型及其优化研究
高贤成
华晋焦煤有限责任公司沙曲二矿, 山西 吕梁 033000
Research on coal damage identification model based on ConDenseNet architecture and its optimization
GAO Xiancheng
Shaqu No.2 Coal Mine, Huajin Coking Coal Co., Ltd., Lüliang 033000, Shanxi, China
下载:  PDF (8521KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 为深入了解煤岩的变形和破裂过程,建立基于声发射前兆信息的判别模型进行煤岩破坏的监测和预警。通过构建整合声发射时空特征的轻量级三维卷积煤岩破坏识别模型,研究煤岩不同破坏阶段识别模型的预测效果,并验证模型的泛化能力。在识别煤岩损伤危险阶段的验证样本中,煤岩破坏识别模型预测准确率为99.39%,高风险样本的召回率超99.2%,表明三维卷积模型能有效捕捉煤岩破坏声发射波形的时空耦合信息。ConDenseNet-SE模型通过知识蒸馏优化进一步降低模型过拟合程度并获得性能和准确率兼备的煤岩破坏识别模型,验证了优化后的ConDenseNet-SE模型在识别煤岩破坏及破坏预警方面的优越性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
高贤成
关键词:  深度学习  煤岩  变形破坏  知识蒸馏  三维卷积神经网络    
Abstract: In order to deeply understand the deformation and rupture process of coal samples, the early warning discrimination model of coal rock damage monitoring based on acoustic emission precursor information was established to provide an important basis for mine safety production. By constructing a lightweight three-dimensional convolutional coal rock damage identification model integrating acoustic emission temporal and spatial features, the prediction effect of the identification model for different stages of coal rock damage was studied, and the model's generalization ability was verified. The prediction accuracy of the coal rock damage recognition model was 99.39% in the validation samples of identifying the damage hazard stages of coal samples, and the recall rate of the high-risk samples was also more than 99.20%, which indicated that 3D convolution could effectively captured the coupled spatio-temporal information of the acoustic emission waveforms of coal sample damage. Moreover, the ConDenseNet with SE model could be optimized by knowledge distillation to further reduce the degree of model overfitting and obtain a coal damage recognition model with both performance and accuracy, which verified the superiority of the optimized ConDenseNet with SE model in identifying coal damage and damage warning.
Key words:  deep learning    coal    deformation and failure    knowledge distillation    3D convolutional neural network
收稿日期:  2024-11-11      修回日期:  2024-12-11      发布日期:  2025-01-08     
中图分类号:  TU45  
基金资助: 国家自然科学基金面上资助项目(51874014)
作者简介:  高贤成(1982— ),男,山东巨野人,工程师,主要研究方向为煤矿安全生产、地质灾害防治. E-mail:gaoxianchengtougao@163.com
引用本文:    
高贤成. 基于ConDenseNet架构煤岩破坏识别模型及其优化研究[J]. 隧道与地下工程灾害防治, 2024, 6(4): 90-98.
GAO Xiancheng. Research on coal damage identification model based on ConDenseNet architecture and its optimization. Hazard Control in Tunnelling and Underground Engineering, 2024, 6(4): 90-98.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2024/V6/I4/90
[1] 邹才能, 赵群, 张国生, 等. 能源革命: 从化石能源到新能源[J]. 天然气工业, 2016, 36(1): 1-10. ZOU Caineng, ZHAO Qun, ZHANG Guosheng, et al. Energy revolution: from a fossil energy era to a new energy era[J]. Natural Gas Industry, 2016, 36(1): 1-10.
[2] 钱七虎. 地下工程建设安全面临的挑战与对策[J]. 岩石力学与工程学报, 2012, 31(10): 1945-1956. QIAN Qihu. Challenges faced by underground projects construction safety and countermeasures[J]. Chinese Journal of Rock Mechanics and Engineering. 2012, 31(10): 1945-1956.
[3] 马天辉, 唐春安, 唐烈先, 等. 基于微震监测技术的岩爆预测机制研究[J]. 岩石力学与工程学报, 2016, 35(3):470-483. MA Tianhui, TANG Chun'an, TANG Liexian, et al. Mechanism of rock burst forcasting based on micro-seismic monitoring technology[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(3): 470-483.
[4] 韩玉鉴, 韩荣军, 邓志刚, 等. 基于地音事件加权平均能量值的冲击矿压预测[J]. 煤矿开采, 2011, 16(6): 87-89. HAN Yujian, HAN Rongjun, DENG Zhigang, et al. Rock-burst prediction based on weighted average energy of earth acoustic events[J]. Coal Mining Technology, 2011, 16(6): 87-89.
[5] 夏永学, 冯美华, 李浩荡. 冲击地压地球物理监测方法研究[J]. 煤炭科学技术, 2018, 46(12): 54-60. XIA Yongxue, FENG Meihua, LI Haodang. Study on rock burst geophysical monitoring method[J]. Coal Science and Technology, 2018, 46(12): 54-60.
[6] 王国法, 赵国瑞, 任怀伟. 智慧煤矿与智能化开采关键核心技术分析[J]. 煤炭学报, 2019, 44(1): 34-41. WANG Guofa, ZHAO Guorui, REN Huaiwei. Analysis on key technologies of intelligent coal mine and intelligent mining[J]. Journal of China Coal Society, 2019, 44(1): 34-41.
[7] 禹海涛, 朱晨阳. 基于BP神经网络的圆形隧道地震响应预测方法及参数分析[J]. 隧道与地下工程灾害防治, 2023, 5(3): 19-26. YU Haitao, ZHU Chenyang. A BP neural network-based prediction method for seismic response of circular tunnel linings and parameter analysis[J]. Hazard Control in Tunnelling and Underground Engineering, 2023, 5(3): 19-26.
[8] LIU L, SONG W Q, ZENG C, et al. Microseismic event detection and classification based on convolutional neural network[J]. Journal of Applied Geophysics, 2021, 192: 104380.
[9] CHEN J, HE L, QUAN Y, et al. Application of BP neural networks based on genetic simulated annealing algorithm forshortterm electricity price forecasting[C] //2014 International Conference on Advances in Electrical Engineering(ICAEE).Vellore, India: the IEEE Inc, 2014: 1-6.
[10] 张凯. 基于神经网络分析的煤柱型冲击地压多参量综合预警研究[D]. 青岛:山东科技大学,2018. ZHANG Kai. Research on multi parameter comprehensive warning of coal pillarrockburst based on neural network analysis[D].Qingdao: Shandong University of Science and Technology, 2018.
[11] HUANG G, LIU S C, VAN DER MAATEN L, et al. CondenseNet: an efficient DenseNet using learned group convolutions[C] // 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: the IEEE Inc, 2018: 2752-2761.
[12] YANG L, JIANG H J, CAI R J, et al.CondenseNet V2: sparse feature reactivation for deep networks[C] //2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Nashville, USA: the IEEE Inc, 2021: 3568-3577.
[13] 刘建伟, 刘俊文, 罗雄麟. 深度学习中注意力机制研究进展[J]. 工程科学学报, 2021, 43(11): 1499-1511. LIU Jianwei, LIU Junwen, LUO Xionglin. Research progress in attention mechanism in deep learning[J]. Chinese Journal of Engineering, 2021, 43(11): 1499-1511.
[14] 任欢, 王旭光. 注意力机制综述[J]. 计算机应用, 2021, 41(增刊1): 1-6. REN Huan, WANG Xuguang. Review of attention mechanism[J]. Journal of Computer Applications, 2021, 41(Suppl.1): 1-6.
[15] 耿荣生. 声发射技术发展现状——学会成立20周年回顾[J]. 无损检测, 1998, 20(6): 151-154. GENG Rongsheng. Recent development of acoustic emission: twenty-year review of Chinese society for NDT[J]. Nondestructive Testing, 1998, 20(6): 151-154.
[16] 秦四清. 岩石声发射技术概论[M]. 成都:西南交通大学出版社, 1993.
[17] WANG T, LIU Z S, LIU L Y. Investigating a three-dimensional convolution recognition model for acoustic emission signal analysis during uniaxial compression failure of coal[J]. Geomatics, Natural Hazards and Risk, 2024, 15(1):2322483.
[18] YANG G H, FENG W, JIN J T, et al. Face mask recognition system with YOLOV5 based on image recognition[C] //2020 IEEE 6th International Conference on Computer and Communications(ICCC). Chengdu, China: the IEEE Inc, 2020: 1398-1404.
[19] 王敬贤. 基于卷积神经网络和迁移学习的农作物病害和杂草图像识别研究[D]. 合肥:中国科学技术大学, 2019. WANG Jingxian. Research on image identification of crop diseases and weeds based on CNN and transfer learning[D]. Hefei: University of Science and Technology of China, 2019.
[20] 金龙, 况雪源, 黄海洪, 等. 人工神经网络预报模型的过拟合研究[J]. 气象学报, 2004, 62(1): 62-70. JIN Long, KUANG Xueyuan, HUANG Haihong, et al. Study on the overfitting of the artificial neural network for ecasting model[J]. Acta Meteorologica Sinica, 2004, 62(1): 62-70.
[21] 黄启灏, 靳国旺, 熊新, 等. 通道剪枝与知识蒸馏相结合的轻量化SAR目标检测[J]. 测绘学报, 2024, 53(4): 712-723. HUANG Qihao, JIN Guowang, XIONG Xin, et al. Lightweight SAR target detection based on channel pruning and knowledge distillation[J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(4): 712-723.
[22] 刘静, 郑铜亚, 郝沁汾. 图知识蒸馏综述:算法分类与应用分析[J]. 软件学报, 2024, 35(2): 675-710. LIU Jing, ZHENG Tongya, HAO Qinfen, et al. Survey on knowledge distillation with graph: algorithms classification and application analysis[J]. Journal of Software, 2024, 35(2): 675-710.
[23] HINTON G, VINYALS O, DEAN J. Distilling the knowledge in a neural network[J]. Computer Science, 2015, 14(7): 38-39.
[1] 蒋宇静, 王兴达, 张学朋. 远场地震作用下跨断层深埋隧道结构的动力变形破坏特征[J]. 隧道与地下工程灾害防治, 2023, 5(3): 1-11.
[2] 方恩权, 王耀东, 李星言, 马农杰. 地铁盾构隧道渗漏水病害图像识别算法[J]. 隧道与地下工程灾害防治, 2022, 4(4): 28-33.
[3] 张振南, 杨跃宗. 考虑顶板下沉效应的煤体卸荷动态断裂数值模拟[J]. 隧道与地下工程灾害防治, 2021, 3(3): 29-35.
[4] 于永军, 朱万成, 李连崇, 魏晨慧, 张秀凤, 秦超, 宋旭. 深地层煤岩组合体水力压裂裂缝扩展模拟研究[J]. 隧道与地下工程灾害防治, 2019, 1(3): 96-108.
[1] WANG Shengtao, CHEN Pengtao, LIU Aiwu, SUN Wenhao, ZHANG Junru. Construction mechanics behavior of extra-large span continuous variable cross-section tunnels using dual guide tunnel advance-central column reverse excavation method[J]. Hazard Control in Tunnelling and Underground Engineering, 2024, 6(4): 1 -11 .
[2] SONG Changqing, FANG Xiaozheng, XIE Ji'an. Traffic noise data quality control method and its application in surface wave exploration[J]. Hazard Control in Tunnelling and Underground Engineering, 2024, 6(4): 20 -26 .
[3] LIU Liying, OU Zhenfeng, YANG Chunshan, DUAN Shanglei. Numerical simulation and field measurement analysis of coastal structures under immersed tunnel trench excavation[J]. Hazard Control in Tunnelling and Underground Engineering, 2024, 6(4): 12 -19 .
[4] SUN Chao, ZHANG Guangwei, DA Wuqiang, YU Zufeng. Anti-floating control technology for large-diameter shield tunnels of adjacent mountain[J]. Hazard Control in Tunnelling and Underground Engineering, 2024, 6(4): 27 -37 .
[5] LIU Jianbin, YANG Zhiyong, RAO Li, WANG Shuying, FANG Kejun, WANG Zhuo, YANG Zebin. Optimization of construction logistics organization for multi-section service tunnels in ultra-deep shafts[J]. Hazard Control in Tunnelling and Underground Engineering, 2024, 6(4): 38 -49 .
[6] LI Qidi, LIANG Qingguo, ZHOU Ren, YANG Jiawei, CAI Zunle. Analysis of initial ground stress field and prediction of rockurst in Ganqing Tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2024, 6(4): 50 -60 .
[7] ZHAO Zeqian, ZHU Min, BAO Xiaohua, YANG Chunshan, CHEN Xiangsheng. Assessing the blast resistance performance of ultra-large diameter shield tunnels passing under hazardous chemical containers at docks[J]. Hazard Control in Tunnelling and Underground Engineering, 2024, 6(4): 61 -71 .
[8] ZHONG Jianmin, ZHANG Liangliang, HE Yingdao, LUO Chiheng, XIONG Yifan, WANG Chao. Key design techniques of the north extension project of Jinan Jiluo Road Yellow River Tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2024, 6(4): 72 -80 .
[9] WEI Songyuan, LI Hanshuo, PENG Zhenhua, WANG Zhechao, LI Wei. Experimental analysis of vertical water curtain and effectiveness of water curtain system in an underground water sealed cavern[J]. Hazard Control in Tunnelling and Underground Engineering, 2024, 6(4): 81 -89 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn