Abstract: In order to deeply understand the deformation and rupture process of coal samples, the early warning discrimination model of coal rock damage monitoring based on acoustic emission precursor information was established to provide an important basis for mine safety production. By constructing a lightweight three-dimensional convolutional coal rock damage identification model integrating acoustic emission temporal and spatial features, the prediction effect of the identification model for different stages of coal rock damage was studied, and the model's generalization ability was verified. The prediction accuracy of the coal rock damage recognition model was 99.39% in the validation samples of identifying the damage hazard stages of coal samples, and the recall rate of the high-risk samples was also more than 99.20%, which indicated that 3D convolution could effectively captured the coupled spatio-temporal information of the acoustic emission waveforms of coal sample damage. Moreover, the ConDenseNet with SE model could be optimized by knowledge distillation to further reduce the degree of model overfitting and obtain a coal damage recognition model with both performance and accuracy, which verified the superiority of the optimized ConDenseNet with SE model in identifying coal damage and damage warning.
高贤成. 基于ConDenseNet架构煤岩破坏识别模型及其优化研究[J]. 隧道与地下工程灾害防治, 2024, 6(4): 90-98.
GAO Xiancheng. Research on coal damage identification model based on ConDenseNet architecture and its optimization. Hazard Control in Tunnelling and Underground Engineering, 2024, 6(4): 90-98.
[1] 邹才能, 赵群, 张国生, 等. 能源革命: 从化石能源到新能源[J]. 天然气工业, 2016, 36(1): 1-10. ZOU Caineng, ZHAO Qun, ZHANG Guosheng, et al. Energy revolution: from a fossil energy era to a new energy era[J]. Natural Gas Industry, 2016, 36(1): 1-10. [2] 钱七虎. 地下工程建设安全面临的挑战与对策[J]. 岩石力学与工程学报, 2012, 31(10): 1945-1956. QIAN Qihu. Challenges faced by underground projects construction safety and countermeasures[J]. Chinese Journal of Rock Mechanics and Engineering. 2012, 31(10): 1945-1956. [3] 马天辉, 唐春安, 唐烈先, 等. 基于微震监测技术的岩爆预测机制研究[J]. 岩石力学与工程学报, 2016, 35(3):470-483. MA Tianhui, TANG Chun'an, TANG Liexian, et al. Mechanism of rock burst forcasting based on micro-seismic monitoring technology[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(3): 470-483. [4] 韩玉鉴, 韩荣军, 邓志刚, 等. 基于地音事件加权平均能量值的冲击矿压预测[J]. 煤矿开采, 2011, 16(6): 87-89. HAN Yujian, HAN Rongjun, DENG Zhigang, et al. Rock-burst prediction based on weighted average energy of earth acoustic events[J]. Coal Mining Technology, 2011, 16(6): 87-89. [5] 夏永学, 冯美华, 李浩荡. 冲击地压地球物理监测方法研究[J]. 煤炭科学技术, 2018, 46(12): 54-60. XIA Yongxue, FENG Meihua, LI Haodang. Study on rock burst geophysical monitoring method[J]. Coal Science and Technology, 2018, 46(12): 54-60. [6] 王国法, 赵国瑞, 任怀伟. 智慧煤矿与智能化开采关键核心技术分析[J]. 煤炭学报, 2019, 44(1): 34-41. WANG Guofa, ZHAO Guorui, REN Huaiwei. Analysis on key technologies of intelligent coal mine and intelligent mining[J]. Journal of China Coal Society, 2019, 44(1): 34-41. [7] 禹海涛, 朱晨阳. 基于BP神经网络的圆形隧道地震响应预测方法及参数分析[J]. 隧道与地下工程灾害防治, 2023, 5(3): 19-26. YU Haitao, ZHU Chenyang. A BP neural network-based prediction method for seismic response of circular tunnel linings and parameter analysis[J]. Hazard Control in Tunnelling and Underground Engineering, 2023, 5(3): 19-26. [8] LIU L, SONG W Q, ZENG C, et al. Microseismic event detection and classification based on convolutional neural network[J]. Journal of Applied Geophysics, 2021, 192: 104380. [9] CHEN J, HE L, QUAN Y, et al. Application of BP neural networks based on genetic simulated annealing algorithm forshortterm electricity price forecasting[C] //2014 International Conference on Advances in Electrical Engineering(ICAEE).Vellore, India: the IEEE Inc, 2014: 1-6. [10] 张凯. 基于神经网络分析的煤柱型冲击地压多参量综合预警研究[D]. 青岛:山东科技大学,2018. ZHANG Kai. Research on multi parameter comprehensive warning of coal pillarrockburst based on neural network analysis[D].Qingdao: Shandong University of Science and Technology, 2018. [11] HUANG G, LIU S C, VAN DER MAATEN L, et al. CondenseNet: an efficient DenseNet using learned group convolutions[C] // 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: the IEEE Inc, 2018: 2752-2761. [12] YANG L, JIANG H J, CAI R J, et al.CondenseNet V2: sparse feature reactivation for deep networks[C] //2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Nashville, USA: the IEEE Inc, 2021: 3568-3577. [13] 刘建伟, 刘俊文, 罗雄麟. 深度学习中注意力机制研究进展[J]. 工程科学学报, 2021, 43(11): 1499-1511. LIU Jianwei, LIU Junwen, LUO Xionglin. Research progress in attention mechanism in deep learning[J]. Chinese Journal of Engineering, 2021, 43(11): 1499-1511. [14] 任欢, 王旭光. 注意力机制综述[J]. 计算机应用, 2021, 41(增刊1): 1-6. REN Huan, WANG Xuguang. Review of attention mechanism[J]. Journal of Computer Applications, 2021, 41(Suppl.1): 1-6. [15] 耿荣生. 声发射技术发展现状——学会成立20周年回顾[J]. 无损检测, 1998, 20(6): 151-154. GENG Rongsheng. Recent development of acoustic emission: twenty-year review of Chinese society for NDT[J]. Nondestructive Testing, 1998, 20(6): 151-154. [16] 秦四清. 岩石声发射技术概论[M]. 成都:西南交通大学出版社, 1993. [17] WANG T, LIU Z S, LIU L Y. Investigating a three-dimensional convolution recognition model for acoustic emission signal analysis during uniaxial compression failure of coal[J]. Geomatics, Natural Hazards and Risk, 2024, 15(1):2322483. [18] YANG G H, FENG W, JIN J T, et al. Face mask recognition system with YOLOV5 based on image recognition[C] //2020 IEEE 6th International Conference on Computer and Communications(ICCC). Chengdu, China: the IEEE Inc, 2020: 1398-1404. [19] 王敬贤. 基于卷积神经网络和迁移学习的农作物病害和杂草图像识别研究[D]. 合肥:中国科学技术大学, 2019. WANG Jingxian. Research on image identification of crop diseases and weeds based on CNN and transfer learning[D]. Hefei: University of Science and Technology of China, 2019. [20] 金龙, 况雪源, 黄海洪, 等. 人工神经网络预报模型的过拟合研究[J]. 气象学报, 2004, 62(1): 62-70. JIN Long, KUANG Xueyuan, HUANG Haihong, et al. Study on the overfitting of the artificial neural network for ecasting model[J]. Acta Meteorologica Sinica, 2004, 62(1): 62-70. [21] 黄启灏, 靳国旺, 熊新, 等. 通道剪枝与知识蒸馏相结合的轻量化SAR目标检测[J]. 测绘学报, 2024, 53(4): 712-723. HUANG Qihao, JIN Guowang, XIONG Xin, et al. Lightweight SAR target detection based on channel pruning and knowledge distillation[J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(4): 712-723. [22] 刘静, 郑铜亚, 郝沁汾. 图知识蒸馏综述:算法分类与应用分析[J]. 软件学报, 2024, 35(2): 675-710. LIU Jing, ZHENG Tongya, HAO Qinfen, et al. Survey on knowledge distillation with graph: algorithms classification and application analysis[J]. Journal of Software, 2024, 35(2): 675-710. [23] HINTON G, VINYALS O, DEAN J. Distilling the knowledge in a neural network[J]. Computer Science, 2015, 14(7): 38-39.