The best supporting time of hydraulic tunnels based on multiple monitoring information
XIAO Peiwei1,2, YANG Xingguo1,2, QIAN Hongjian3, WANG Haofan4, LI Biao4*, XU Nuwen1,2
1. College of Water Resource and Hydropower, Sichuan University, Chengdu 610065, Sichuan, China; 2. State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, Sichuan, China; 3. CHN Energy Jinsha River Xulong Hydropower Co., Ltd., Garze Tibetan Autonomous Prefecture 627950, Sichuan, China; 4. School of Geoscience and Technology, Southwest Petroleum University, Chengdu 610500, Sichuan, China
Abstract: To scientifically determine the timing of hydraulic tunnel support under complex geological conditions in the southwestern region, the diversion tunnel of Xulong Hydropower Station was selected as the research object. Three-dimensional laser scanning, acoustic wave testing, and microseismic monitoring technologies were integrated into a collaborative analysis method for surface deformation, shallow damage, and internal fractures. Through continuous spatiotemporal monitoring, the time-dependent deformation characteristics of surrounding rock, evolution patterns of wave velocity fields, and spatiotemporal distribution modes of microfractures were systematically tracked. Monitoring data revealed that significant deformation of surrounding rock, wave velocity variations, and microseismic activities were observed during the initial stage. These parameters gradually stabilized 11 days after excavation. During this period, the self-bearing capacity of the surrounding rock was maximized, serving as the basis for optimal support timing. Engineering practice verified that the self-supporting capacity of Class II surrounding rock was fully utilized when supports were implemented 11 days post-excavation. This finding provides important references for determining support timing in similar projects.
肖培伟,杨兴国,钱洪建,王浩帆,李彪,徐奴文. 基于多元监测信息的水工隧洞最佳支护时机[J]. 隧道与地下工程灾害防治, 2025, 7(1): 11-21.
XIAO Peiwei, YANG Xingguo, QIAN Hongjian, WANG Haofan, LI Biao, XU Nuwen. The best supporting time of hydraulic tunnels based on multiple monitoring information. Hazard Control in Tunnelling and Underground Engineering, 2025, 7(1): 11-21.
[1] MAO H Y, XU N W, LI X, et al. Analysis of rockburst mechanism and warning based on microseismic moment tensors and dynamic Bayesian networks[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2023, 15(10): 2521-2538. [2] XIAO P W, LI B, DING Q F, et al. Evaluation of blasting parameters for hydraulic tunnels based on multiple monitoring information[J]. Geomatics, Natural Hazards and Risk, 2024, 15(1): 2311895. [3] 赵周能, 冯夏庭, 陈炳瑞, 等. 深埋隧洞微震活动区与岩爆的相关性研究[J]. 岩土力学, 2013, 34(2): 491-497. ZHAO Zhouneng, FENG Xiating, CHEN Bingrui, et al. Study of relativity between rockburst and microseismic activity zone in deep tunnel[J]. Rock and Soil Mechanics, 2013, 34(2): 491-497. [4] SU K, ZHANG Y J, CUI J P, et al. Installation time of ground support during tunnel excavation: a novel graph methodology[J]. KSCE Journal of Civil Engineering, 2020, 24(12): 3866-3874. [5] 贺家新, 贺少辉, 刘夏冰, 等. 脆岩超大断面隧道双层初支支护时机研究[J]. 岩石力学与工程学报, 2023, 42(12): 3010-3019. HE Jiaxin, HE Shaohui, LIU Xiabing, et al. Study on supporting time of double-layer primary support for super-large section tunnels in brittle rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(12): 3010-3019. [6] 张妍珺, 苏凯, 周利, 等. 基于收敛-约束法的隧洞纵向变形演化规律研究与支护时机估算[J]. 岩土力学, 2017, 38(增刊1): 471-478. ZHANG Yanjun, SU Kai, ZHOU Li, et al. Estimation of ground support installation time based on the tunnel longitudinal displacement of convergence-confinement method[J]. Rock and Soil Mechanics, 2017, 38(Suppl.1): 471-478. [7] 刘宁, 张春生, 张传庆, 等. 深埋大直径软岩水工隧洞衬砌结构安全性分析[J]. 隧道与地下工程灾害防治, 2019, 1(2): 92-99. LIU Ning, ZHANG Chunsheng, ZHANG Chuanqing, et al. Analysis on lining structure safety of large hydraulic tunnel in deep-buried soft rock[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(2): 92-99. [8] 王宏超, 胡军, 周永强, 等. 二次衬砌施作时机对盾构隧道纵向力学性能的影响分析[J]. 隧道与地下工程灾害防治, 2024, 6(2): 99-112. WANG Hongchao, HU Jun, ZHOU Yongqiang, et al. The influence of secondary lining construction time on longitudinal mechanical properties of shield tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2024, 6(2): 99-112. [9] 田四明, 王伟, 唐国荣, 等. 川藏铁路隧道工程重大不良地质应对方案探讨[J]. 隧道建设(中英文), 2021, 41(5): 697-712. TIAN Siming, WANG Wei, TANG Guorong, et al. Study on countermeasures for major unfavorable geological issues of tunnels on Sichuan-Tibet Railway[J]. Tunnel Construction, 2021, 41(5): 697-712. [10] 许建军. 基于位移反演的中老铁路泥砂岩互层隧道支护时机研究[J]. 隧道建设(中英文), 2023, 43(增刊2): 129-135. XU Jianjun. Support timing of mudstone-sandstone interbedded tunnel in China-Laos railway based on displacement inversion[J]. Tunnel Construction, 2023, 43(Suppl.2): 129-135. [11] 王立华, 刘源, 孙捷城, 等. 基于压力拱发展规律的隧道初次支护时机研究[J]. 广西大学学报(自然科学版), 2024, 49(1): 37-48. WANG Lihua, LIU Yuan, SUN Jiecheng, et al. Research on the timing of initial tunnel support based on the development of pressure arch[J]. Journal of Guangxi University(Natural Science Edition), 2024, 49(1): 37-48. [12] 张光伟, 罗彦斌. 高地应力软岩隧道内层的初期支护施作时机[J]. 科学技术与工程, 2020, 20(34): 14265-14271. ZHANG Guangwei, LUO Yanbin. Opportunity of the inner primary layer in soft rock tunnel with high ground stress[J]. Science Technology and Engineering, 2020, 20(34): 14265-14271. [13] 方晓睿, 孙洋, 郭刚, 等. 公路隧道二次衬砌支护时机影响因素分析[J]. 施工技术, 2013, 42(13): 93-97. FANG Xiaorui, SUN Yang, GUO Gang, et al. Analysis on influencing factors of the expressway tunnel secondary lining support time[J]. Construction Technology, 2013, 42(13): 93-97. [14] 郭小龙, 谭忠盛, 李磊, 等. 高地应力千枚岩隧道二次衬砌施作时机研究[J]. 中国公路学报, 2020, 33(12): 249-261. GUO Xiaolong, TAN Zhongsheng, LI Lei, et al. Study on the construction time of secondary lining in phyllite tunnel under high geo-stress[J]. China Journal of Highway and Transport, 2020, 33(12): 249-261. [15] 王睿, 党发宁, 王靖媛, 等. 基于松动圈理论的隧道初期支护时机分析[J]. 人民长江, 2021, 52(7): 141-147. WANG Rui, DANG Faning, WANG Jingyuan, et al. Analysis on primary support timing of tunnel based on loose circle theory[J]. Yangtze River, 2021, 52(7): 141-147. [16] 谢金池, 寇昊, 何川, 等. 高地应力软岩大变形隧道洞型及双层初期支护支护时机研究[J]. 隧道建设(中英文), 2022, 42(9): 1578-1588. XIE Jinchi, KOU Hao, HE Chuan, et al. Hole type and supporting time of double-layer primary support for large deformation soft rock tunnel with high insitu stress[J]. Tunnel Construction, 2022, 42(9): 1578-1588. [17] 周建, 胡坚, 王浩, 等. 深埋隧洞分步支护合理支护时机的力学研究[J]. 工程力学, 2019, 36(12): 145-152. ZHOU Jian, HU Jian, WANG Hao, et al. Mechanical study on step-by-step timely supporting for deep-buried tunnels[J]. Engineering Mechanics, 2019, 36(12): 145-152. [18] 国家能源集团金沙江旭龙水电有限公司. 金沙江上游旭龙水电站导流洞工程施工招标文件参考资料:工程地质[R]. 成都: 国家能源集团金沙江旭龙水电有限公司, 2021. [19] JIANG Q, ZHONG S, PAN P Z, et al. Observe the temporal evolution of deep tunnel's 3D deformation by 3D laser scanning in the Jinchuan No.2 Mine[J]. Tunnelling and Underground Space Technology, 2020, 97: 103237. [20] 刘刚, 肖勇卓, 朱俊福, 等. 围岩松动圈理论计算方法的评述与展望[J]. 煤炭学报, 2021, 46(1): 46-56. LIU Gang, XIAO Yongzhuo, ZHU Junfu, et al. Overview on theoretical calculation method of broken rock zone[J]. Journal of China Coal Society, 2021, 46(1): 46-56. [21] LI B, LI T, XU N W, et al. Stability assessment of the left bank slope of the Baihetan Hydropower Station, Southwest China[J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 104: 34-44. [22] 国家能源局. 水电水利工程施工安全监测技术规范: DL/T 5308—2013[S]. 北京: 中国电力出版社, 2014.