Please wait a minute...
 
隧道与地下工程灾害防治  2025, Vol. 7 Issue (1): 83-89    DOI: 10.19952/j.cnki.2096-5052.2025.01.08
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
超大跨度隧道预应力锚杆与锚索组合支护设计方法
王浩
中铁十五局集团有限公司, 上海 200070
Design method of combined support of prestressed bolt and cable for super large span tunnel
WANG Hao
China Railway 15th Bureau Group Co., Ltd., Shanghai 200070, China
下载:  PDF (1944KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 为解决超大跨度隧道中预应力锚杆与锚索组合支护的设计难题,基于围岩压力拱理论,对锚杆与锚索的组合效应、锚固参数进行分析,并在八达岭长城站大跨过渡段进行支护效果评价。研究结果表明:压力拱的合理拱轴线为椭圆,轴半径由地应力、断面形状决定,压力拱椭圆短轴方向、长轴方向与开挖断面的重合方式决定了压力拱轴力;预应力锚杆与浅部围岩相互作用形成具有承载能力的压力拱,锚固参数决定了压力拱的形状和抗压强度;预应力锚索充分发挥深部稳定围岩承载能力,锚固参数决定了自身极限承载力。通过拱顶沉降对组合支护的支护效果进行了分析,拱顶最大沉降值为36.9 mm,表明预应力锚杆与锚索组合支护体系可以有效控制围岩变形。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王浩
关键词:  超大跨度隧道  预应力锚杆  锚索  组合支护  压力拱    
Abstract: In order to address the design problem of the combined support of prestressed bolts and prestressed cables in super-large span tunnels, based on the theory of the perimeter rock pressure arch, the combined effect of prestressed bolts and prestressed cables, along with the anchoring parameters, was analyzed. The support effect was evaluated in the large span transition section of Badaling Great Wall Station. It was found that the optimal arch axis of a pressure arch followed an elliptical shape, with the semi-axes were determined by the in-situ stress and the cross-sectional geometry. The axial force of the pressure arch was determined by the coincidence of the short axis direction and long axis direction of the pressure arch ellipse with the excavation section. Prestressed bolts were observed to interact with shallow surrounding rock to form pressure arches with bearing capacity, and the anchoring parameters were found to determine the shape and compressive strength of the pressure arches. Prestressed cables were utilized to fully exploit the bearing capacity of deep, stable surrounding rock, with the anchoring parameters determining their ultimate bearing capacity. The supporting effect of the combined support of prestressed bolts and prestressed cables was analyzed through the settlement of the vault. The maximum settlement of the vault was measured at 36.9 mm, indicating that the combined support system of prestressed bolts and prestressed cables effectively controls the deformation of surrounding rock.
Key words:  super large span tunnel    prestressed bolt    cable    combined support    pressure archReceived: 2024-11-14    Revised: 2024-12-09    Accepted: 2024-12-13    Published: 2025-03-20
发布日期:  2025-03-28     
中图分类号:  U231  
  U455.43  
基金资助: 国家自然科学基金铁路基础研究联合基金资助项目(U2468219)
作者简介:  王浩(1991— ),男,山东枣庄人,工程师,博士,主要研究方向为隧道支护、隧道病害防治. E-mail:770893890@qq.com
引用本文:    
王浩. 超大跨度隧道预应力锚杆与锚索组合支护设计方法[J]. 隧道与地下工程灾害防治, 2025, 7(1): 83-89.
WANG Hao. Design method of combined support of prestressed bolt and cable for super large span tunnel. Hazard Control in Tunnelling and Underground Engineering, 2025, 7(1): 83-89.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2025/V7/I1/83
[1] 张顶立, 王梦恕, 高军, 等. 复杂围岩条件下大跨隧道修建技术研究[J]. 岩石力学与工程学报, 2003, 22(2): 290-296. ZHANG Dingli, WANG Mengshu, GAO Jun, et al. Construction technique of large-span tunnel under condition of complicated surrounding rocks[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(2): 290-296.
[2] 龚彦峰, 张俊儒, 徐向东, 等. 全风化花岗岩富水地层超大断面隧道设计技术[J]. 铁道工程学报, 2015, 32(10): 79-85. GONG Yanfeng, ZHANG Junru, XU Xiangdong, et al. Design technology for super large cross section tunnel in stratum of completely weathered granite with abundant water[J]. Journal of Railway Engineering Society, 2015, 32(10): 79-85.
[3] 洪军, 郭海满, 张俊儒, 等. 新考塘隧道出口三线渐变段结构选型与施工工法研究[J]. 隧道建设(中英文), 2016, 36(8): 953-959. HONG Jun, GUO Haiman, ZHANG Junru, et al. Study of structure selection and construction method for three-line transition section at exit of Xinkaotang Tunnel[J]. Tunnel Construction, 2016, 36(8): 953-959.
[4] 曲海锋. 扁平特大断面公路隧道荷载模式及应用研究[D]. 上海: 同济大学, 2007. QU Haifeng. Study on load mode of road tunnel with extra-large cross-section and low flat-ratio and its application[D]. Shanghai: Tongji University, 2007.
[5] 章慧健, 龚伦, 仇文革, 等. 隧道分部开挖的围岩松动区演变分析[J]. 岩土工程学报, 2014, 36(12): 2323-2329. ZHANG Huijian, GONG Lun, QIU Wenge, et al. Evolution of loosened zone of surrounding rock for tunnels constructed by multi-partition excavation method[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(12): 2323-2329.
[6] 朱正国, 李文江, 宋玉香. 超大跨车站隧道三维数值模拟分析[J]. 岩土力学, 2008, 29(增刊1): 277-282. ZHU Zhengguo, LI Wenjiang, SONG Yuxiang. 3D numerical simulation of super-large span railway station[J]. Rock and Soil Mechanics, 2008, 29(Suppl.1): 277-282.
[7] VANICEK I, VANICEK M. The degree of deterioration of the tunnels of the prague metro based on a monitoring assessment[J]. Acta Geotechnica Slovenica, 2007, 4(2):34-47.
[8] SADAGHIANI M H, DADIZADEH S. Study on the effect of a new construction method for a large span metro underground station in Tabriz-Iran[J]. Tunnelling and Underground Space Technology, 2010, 25(1): 63-69.
[9] SHARIFZADEH M, KOLIVAND F, GHORBANI M, et al. Design of sequential excavation method for large span urban tunnels in soft ground-Niayesh Tunnel[J]. Tunnelling and Underground Space Technology, 2013, 35: 178-188.
[10] 高源, 杨天鸿, 辛全明, 等. 北山隧道式大跨度地下四季滑雪场围岩稳定性研究[J]. 隧道与地下工程灾害防治, 2019, 1(3): 109-115. GAO Yuan, YANG Tianhong, XIN Quanming, et al. Study on stability of surrounding rock in large-span underground tunnel of Beishan four seasons ski resort[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(3): 109-115.
[11] ROBINSON R A, KUCEKER M S, FELDMAN A I, et al. Ground and liner behavior during construction of the Mt. Baker Ridge Tunnel[C] //Proceedings of the Rapid Excavation and Tunneling Conference. New Orleans, USA: Elsevier, 1987: 309-328.
[12] LUNARDI P. Cellular arch technique for large-span station cavern[J]. Tunnels and Tunnelling International, 1991, 23(11): 23-26.
[13] 宋瑞霞, 赵永虎, 米维军, 等. 帷幕注浆在富水大跨度黄土隧道中的应用[J]. 隧道与地下工程灾害防治, 2021, 3(2): 43-48. SONG Ruixia, ZHAO Yonghu, MI Weijun, et al. Application of curtain grouting in watery and large-span loess tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2021, 3(2): 43-48.
[14] 陈建勋, 罗彦斌. 大跨度黄土公路隧道结构稳定性及控制技术研究[J]. 隧道与地下工程灾害防治, 2019, 1(1): 93-101. CHEN Jianxun, LUO Yanbin. The stability of structure and its control technology for lager-span loess tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 93-101.
[15] 罗彬, 杨晖, 刘宁, 等. 超大断面隧道预留中岩柱围岩应力及其支撑控制技术[J]. 隧道与地下工程灾害防治, 2021, 3(1): 48-57. LUO Bin, YANG Hui, LIU Ning, et al. Surrounding rock stress of rock pillar and its support control technology in super-large cross-section tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2021, 3(1): 48-57.
[16] 肖丛苗, 张顶立, 朱焕春, 等. 大跨度地下工程支护结构研究[J]. 岩土力学, 2015, 36(增刊2): 513-518, 524. XIAO Congmiao, ZHANG Dingli, ZHU Huanchun, et al. Study of large-span underground engineering supporting structure [J]. Rock and Soil Mechanics, 2015, 36(Suppl.2): 513-518, 524.
[17] 孙振宇, 张顶立, 房倩. 隧道锚固系统的协同作用及设计方法[J]. 工程力学, 2019, 36(5): 53-66. SUN Zhenyu, ZHANG Dingli, FANG Qian. The synergistic effect and design method of tunnel anchorage system[J]. Engineering Mechanics, 2019, 36(5): 53-66.
[18] 王文谦.大跨度隧道围岩压力拱效应研究[D]. 北京:北京交通大学, 2018. WANG Wenqian. Study on pressure arch effect of a large crosssection tunnel[D]. Beijing: Beijing Jiaotong University, 2018.
[19] 王博楠. 巷道围岩锚杆支护作用的加固拱理论及应用研究[D]. 西安: 西安科技大学, 2013. WANG Bonan.Theoretical and applicational study of anchor reinforced arch in roadway surrounding rock[D]. Xi'an: Xi'an University of Science and Technology, 2013.
[20] 何思明. 预应力锚索作用机理研究[D]. 成都: 西南交通大学, 2004. HE Siming. Study on mechanism of prestressed anchor rope[D]. Chengdu: Southwest Jiaotong University, 2004.
[21] HUANG Z P, BROCH E, LU M. Cavern roof stability: mechanism of arching and stabilization by rockbolting[J]. Tunnelling and Underground Space Technology, 2002, 17(3): 249-261.
[22] 中国铁路总公司. 铁路隧道监控量测技术规程: Q/CR 9218—2024[S]. 北京: 中国铁道出版社, 2024.
[1] 孙超, 张光伟, 答武强, 余祖峰. 临山条件下大直径盾构隧道抗浮控制技术[J]. 隧道与地下工程灾害防治, 2024, 6(4): 27-37.
[2] 杨文东, 刘春天, 张祥, 陈晓鹏, 井文君, 张连震, 王柄淇, 秦昊. 锚索预应力损失与岩体蠕变耦合的理论分析[J]. 隧道与地下工程灾害防治, 2023, 5(2): 33-41.
[3] 王庆瀚, 赵继增, 田宁. 硬岩地层大断面暗挖车站主动支护设计及其接口段施工技术[J]. 隧道与地下工程灾害防治, 2021, 3(2): 86-96.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn