Abstract: Taking a rapid transformation project in Shenzhen as an example, a numerical simulation method was used to establish a large-diameter shield tunnel of adjacent Mountain 3D model. The deformation and stress characteristics of shield tunnel with shallow overburden soil under biased pressure were analyzed. Based on the experience of anti-floating construction in similar projects, the box reinforcement scheme, the loading scheme, the uplift pile-pipe rooft-anti-floating plate scheme and the prestressed anchor cable-anti-floating plate scheme were proposed to control the deformation of shield tunnels. The results showed that during the evolution process of shield tunnel from biased overburden to shallow overburden, the vertical deformation of the tunnel was greater than the horizontal deformation, and the deformation was significantly asymmetric due to the influence of biased loads. In terms of force characteristics, the bending moment and axial force of the segments exhibited an irregular dumbbell shape as a whole. As the Biased pressure weakens, the shape of the internal force gradually shifts from dumbbell shaped to left-right symmetrical. Under various anti-floating measures, from the distribution range and scale of the plastic zone, the development range of the plastic zone was the smallest under loading scheme, followed by the prestressed anchor cable-anti-floating plate scheme. In terms of controlling tunnel deformation, the loading scheme was significantly better than the prestressed anchor cable-anti-floating plate scheme, the uplift pile-pipe rooft-anti-floating plate scheme, and the box reinforcement scheme had the worst effect on controlling deformation. The better the deformation control effect, the greater the stress on the shield tunnel under this scheme. It was recommended to adopt a prestressed anchor cable-anti-floating plate scheme for this project.
孙超, 张光伟, 答武强, 余祖峰. 临山条件下大直径盾构隧道抗浮控制技术[J]. 隧道与地下工程灾害防治, 2024, 6(4): 27-37.
SUN Chao, ZHANG Guangwei, DA Wuqiang, YU Zufeng. Anti-floating control technology for large-diameter shield tunnels of adjacent mountain. Hazard Control in Tunnelling and Underground Engineering, 2024, 6(4): 27-37.
[1] 唐文冲. 正上方基坑开挖对运营地铁隧道上浮影响与防控研究[D]. 哈尔滨: 哈尔滨工业大学, 2020. TANG Wenchong. Impact and prevention of excavating foundation pit directly above operating subway [D].Harbin: Harbin Institute of Technology, 2020. [2] 谭毅俊,彭元栋,刘爽,等. 加固厚度对软土地层大直径盾构隧道抗浮的影响[J]. 建筑科学与工程学报,2021,38(6):163-169. TAN Yijun,PENG Yuandong, LIU Shuang, et al. Influence of reinforcement thickness on anti-floating of large-diameter shield tunnels in soft soil stratum[J]. Journal of Architecture and Civil Engineering, 2021, 38(6):163-169. [3] 吴惠明. 地面出入式盾构隧道结构变形特性及控制研究[D]. 上海:上海大学, 2014. WU Huiming. Study on characteristics analyse and controlling technogy of structure deformation in GPST[D]. Shanghai:Shanghai University, 2014. [4] 伍凯, 毕延哲, 杨鑫, 等. 超浅覆土小净距上跨运营线路盾构掘进超前管幕支护模拟分析[J]. 路基工程, 2023(4): 130-136. WU Kai, BI Yanzhe, YANG Xin, et al. Simulation analysis of advanced tubal curtain support for shield tunneling passing over the operation line with small spacing under ultra-shallow covering[J]. Subgrade Engineering, 2023(4): 130-136. [5] 魏纲, 赵毅, 孙樵. 基坑开挖下抗浮锚杆对盾构隧道控制效果预测[J]. 地下空间与工程学报, 2022, 18(2): 603-610. WEI Gang, ZHAO Yi, SUN Qiao. Prediction of control effect of anti-floating anchor on shield tunnel under foundation pit excavation[J]. Chinese Journal of Underground Space and Engineering, 2022, 18(2): 603-610. [6] 文仁学. 抗拔桩+抗浮板加固体系在上跨盾构隧道基坑开挖中的应用分析[J]. 路基工程, 2021(4): 188-193. WEN Renxue. Application analysis of uplift pile+anti-floating plate reinforcement system in foundation pit excavation of upper span shield tunnel[J]. Subgrade Engineering, 2021(4): 188-193. [7] 郑刚, 潘军, 程雪松, 等. 基坑开挖引起隧道水平变形的被动与注浆主动控制研究[J]. 岩土工程学报, 2019, 41(7): 1181-1190. ZHENG Gang, PAN Jun, CHENG Xuesong, et al. Passive control and active grouting control of horizontal deformation of tunnels induced neighboring excavation[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(7): 1181-1190. [8] 邓日朗, 郑先昌, 岳云鹏, 等. 竖井工法开挖深基坑对下卧既有隧道上浮变形的控制[J]. 科学技术与工程, 2022, 22(20): 8947-8953. DENG Rilang, ZHENG Xianchang, YUE Yunpeng, et al. Control of vertical shaft excavation of deep foundation pit for the upward floating deformation of underlying existing tunnels[J]. Science Technology and Engineering, 2022, 22(20): 8947-8953. [9] 邓喜. 盾构穿越运营中地铁隧道上方的抗浮技术[J]. 上海建设科技, 2011(4):16-18. [10] 刘建航,刘国彬,范益群. 软土基坑工程中时空效应理论与实践(上)[J]. 地下工程与隧道, 1999(3):7-12. LIU Jianhang, LIU Guobin, FAN Yiqun. The theory and its practice by using the rule of time-space effect in soft soil excavation(part 1)[J]. Underground Engineering and Tunnels, 1999(3): 7-12. [11] 雷亚峰, 何修义. 明挖隧道施工期间下方共线地铁盾构区间上浮控制技术: 以深圳市桂庙路快速化改造工程为例[J]. 隧道建设(中英文), 2019, 39(11): 1888-1897. LEI Yafeng, HE Xiuyi. Floating control technology of lower collinear metro shield section during cut-and-cover tunnel construction: a case study of rapid rehabilitation project on Guimiao Road in Shenzhen[J]. Tunnel Construction, 2019, 39(11): 1888-1897. [12] 刘学彦, 袁大军, 姜曦. 基于抗浮稳定的盾构隧道合理覆土厚度研究[J].中国工程科学,2015,17(1):88-95. LIU Xueyan, YUAN Dajun, JIANG Xi. Research on depth of earth cover for shield tunnel anti-buoyancy security[J]. Strategic Study of CAE, 2015, 17(1):88-95. [13] 中华人民共和国住房和城乡建设部. 盾构隧道工程设计标准: GB/T 51438—2021[S]. 北京: 中国建筑工业出版社, 2021. [14] 贺维国, 周华贵, 刘庆方, 等. 高烈度区超大直径汕头海湾隧道工程勘察设计研究及关键技术[M]. 北京:人民交通出版社,2022. [15] 赵光, 付士陆, 牛浩. 超大直径泥水盾构隧道抗浮原理及措施综述[J]. 建设监理, 2018(2): 78-80. [16] 袁文军. 浅覆越江盾构隧道抗浮研究与数值模拟[D]. 南昌: 南昌航空大学,2013. YUAN Wenjun. The anti-floating study and numerical simulation of shield tunnel across river[D]. Nanchang:Nanchang Hangkong University, 2013. [17] 高诗明. 下伏岩溶地层地铁盾构隧道结构受力特性研究[D]. 武汉:中国地质大学,2017. GAO Shiming. Research on force characteristic of subway shield tunnel's structure in underlying Karst stratum [D]. Wuhan: China University of Geosciences, 2017. [18] 符宇坤, 康成, 梁荣柱, 等. 地表堆卸载对浅覆土盾构隧道影响试验研究[J]. 铁道科学与工程学报, 2024, 21(1): 241-252. FU Yukun, KANG Cheng, LIANG Rongzhu, et al. Experimental investigation on effect of surface loading and unloading on shield tunnel with shallow overburden[J]. Journal of Railway Science and Engineering, 2024, 21(1): 241-252. [19] 周欢阳, 陈俊生, 王一兆. 堆载诱发的下卧盾构隧道病害研究[J]. 科技通报, 2023, 39(2): 84-90. ZHOU Huanyang, CHEN Junsheng, WANG Yizhao. Study on disease of shield tunnels under accidental surcharge[J]. Bulletin of Science and Technology, 2023, 39(2): 84-90. [20] 张芳, 王露露, 朱云桂, 等. 地面堆载作用下盾构隧道结构变形分析[J]. 科学技术与工程, 2023, 23(8): 3474-3481. ZHANG Fang, WANG Lulu, ZHU Yungui, et al. Deformation analysis of shield tunnel structure under ground loading[J]. Science Technology and Engineering, 2023, 23(8): 3474-3481.