Please wait a minute...
 
隧道与地下工程灾害防治  2019, Vol. 1 Issue (2): 92-99    
  本期目录 | 过刊浏览 | 高级检索 |
深埋大直径软岩水工隧洞衬砌结构安全性分析
刘宁1,2,张春生1,张传庆3,褚卫江1,2,陈平志1,2
1. 中国电建集团 华东勘测设计研究院有限公司, 浙江 杭州 311122;2. 浙江中科依泰斯卡岩石工程研发有限公司, 浙江 杭州 310014;3. 中国科学院 武汉岩土力学研究所, 湖北 武汉 430071
Analysis on lining structure safety of large hydraulic tunnel in deep-buried soft rock
LIU Ning1,2, ZHANG Chunsheng1, ZHANG Chuanqing3, CHU Weijiang1,2, CHEN Pingzhi1,2
1. PowerChina Huadong Engineering Corporation Limited, Hangzhou 311122, Zhejiang, China;
2. HydroChina Itasca Research and Development Center, Hangzhou 310014, Zhejiang, China;
3. Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, Hubei, China
下载:  PDF (11272KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 锦屏二级水电站引水隧洞绿泥石片岩洞段埋深达到1 700 m,为典型的工程软岩,具有显著的遇水软化和长期流变特性,在施工过程中遭遇到了挤压大变形、塌方、流变等一系列技术难题。在大量试验和监测数据的基础上,揭示绿泥石片岩矿物成分及细观构造对其宏观力学特性的影响,明确干燥和饱和条件下峰值强度和围压的相互关系及变形随时间的演化规律。在深入分析软岩隧洞复合式承载结构的受力特点的基础上,提出遇水软化和流变效应对衬砌结构安全性影响的分析方法,揭示高地应力软岩环境下衬砌结构的安全性与衬砌时机之间的相互影响机制。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘宁
张春生
张传庆
褚卫江
陈平志
关键词:  深埋  软岩  衬砌结构  流变效应  遇水软化    
Abstract: The chlorite schist in Jinping II hydropower station diversion tunnel is a typical engineering soft. The buried depth of chlorite schist is 1 700 m, and the water softening and long-term rheological properties are significant. A series of technical problems such as large extrusion deformation, collapse and rheological were encountered in the construction process. Based on lots of testing and monitoring data, the effect of chlorite schist mineral composition and mesoscopic structure characteristics on its macroscopic mechanical properties were revealed, and the relationship between the peak strength and confining pressure under dry and saturated conditions was clarified. The evolution of deformation over time was also given. Based on the mechanical characteristics of soft rock tunnel composite bearing structure, the impact of 2019年 - 第1卷第2期刘宁,等:深埋大直径软岩水工隧洞衬砌结构安全性分析 \=-water softening and rheological effect on the safety of lining structure were proposed. The mechanism between lining structure safety and lining timing under high in-situ stress soft rock environment was revealed.
Key words:  deep-buried    soft rock    lining structure    rheological effect    water softening
收稿日期:  2018-03-09                出版日期:  2019-06-30      发布日期:  2019-07-29      期的出版日期:  2019-06-30
中图分类号:  O319.56  
基金资助: 国家自然科学基金资助项目(51409265);中国电建集团科技资助项目(GW-KJ-2013-11)
作者简介:  刘宁(1981— ),男,山东烟台人,博士,教授级高工,浙江省“151”人才工程培养人选,主要研究方向为水利水电工程. E-mail:liu-n@ecidi.com
引用本文:    
刘宁,张春生,张传庆,褚卫江,陈平志. 深埋大直径软岩水工隧洞衬砌结构安全性分析[J]. 隧道与地下工程灾害防治, 2019, 1(2): 92-99.
LIU Ning, ZHANG Chunsheng, ZHANG Chuanqing, CHU Weijiang, CHEN Pingzhi. Analysis on lining structure safety of large hydraulic tunnel in deep-buried soft rock. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(2): 92-99.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2019/V1/I2/92
[1] 钱七虎. 非线性岩石力学的新进展——深部岩体力学的若干问题[C] //中国岩石力学与工程学会. 第八次全国岩石力学与工程学术大会论文集. 北京: 科学出版社, 2004:10-17. QIAN Qihu. The current development of nonlinear rock mechanics: the mechanics problems of deep rock mass[C] //Chinese Society of Rock Mechanics and Engineering. Proceedings of the 8th Rock Mechanics and Engineering Conference. Beijing: Science Press, 2004: 10-17.
[2] 何满潮,景海河,孙晓明. 软岩工程力学[M]. 北京:科学出版社,2002.
[3] 陶波,伍法权,郭启良,等.高地应力作用下乌鞘岭深埋长隧道软弱围岩流变规律实测与数值分析研究[J]. 岩石力学与工程学报, 2006, 25(9): 1828-1834. TAO Bo, WU Faquan, GUO Qiliang, et al. Research on rheology rule of deep-buried long wuqiaoling tunnel under high crust stress by monitoring and numerical analysis[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(9): 1828-1834.
[4] 徐干成,郑颖人,乔春生,等. 地下工程支护结构与设计[M]. 北京:中国水利水电出版社,2013.
[5] 郑颖人,朱合华,方正昌,等. 地下工程围岩稳定分析与设计理论[M]. 北京:人民交通出版社,2012.
[6] 吕品. 锦屏水电站绿片岩段扩挖及落地开挖稳定研究[D]. 大连:大连理工大学,2011. LYU Pin. The research of enlarged excavation and surrounding rock stability in the green dchist area of Jinping Hydropower Station[D]. DaLian:Dalian University of Technology, 2011.
[7] 李震. 绿泥石片岩力学-水化学特性及其对隧洞稳定性影响研究[D]. 武汉:湖北工业大学,2012. LI Zhen. Coupling mechanical-hydro-chemical characteristics of chlorite schist and its effect on tunnel stability[D]. Wuhan: Hubei University of Technology, 2012.
[8] 周春宏. 深埋条件下绿泥石片岩洞段的变形特征[J]. 科技通报,2015,32(3): 108-111. ZHOU Chunhong. Deformation charateristics of chlorite schist tunnel section under deep buried condition[J]. Bulletin of Science and Technology, 2015, 32(3): 108-111.
[9] 刘宁,张传庆,褚卫江,等. 深埋绿泥石片岩变形特征及稳定性分析[J].岩石力学与工程学报,2013,32(10):2045-2052. LIU Ning, ZHANG Chuanqing, CHU Weijiang, et al. Deformation behavior and stability analysis of deep chlorite schist[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(10):2045-2052.
[10] 朱永生, 朱焕春. 绿片岩段衬砌安全性评价[R]. 武汉:Itasca(武汉)咨询有限公司, 2010. ZHU Yongsheng, ZHU Huanchun. Safety evaluation on lining of chlorite schist[R]. Wuhan: Itasca Consulting Co., Ltd. 2010.
[11] 刘志春, 李文江, 朱永全, 等. 软岩大变形隧道二次衬砌施作时机探讨[J]. 岩石力学与工程学报, 2008, 27(3):580-588. LIU Zhichun, LI Wenjiang, ZHU Yongquan, et al. Research on construction time of secondary lining in soft rock of large-deformation tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(3): 580-588.
[1] 焦玉勇,张为社,欧光照,邹俊鹏,陈光辉. 深埋隧道钻爆法开挖段突涌水灾害的形成机制及防控研究综述[J]. 隧道与地下工程灾害防治, 2019, 1(1): 36-46.
[1] QIAN Qihu. Scientific use of the urban underground space to construction the harmonious livable and beautiful city[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 1 -7 .
[2] WANG Zhechao, LI Wei, LIU Jie, GUO Jiafan, ZHANG Yupeng. A review on state-of-the-art of underground gas storage and causes of typical accidents[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -10 .
[3] LIU Ning, ZHANG Chunsheng, ZHANG Chuanqing, CHU Weijiang, CHEN Pingzhi, . Analysis on lining structure safety of large hydraulic tunnel in deep-buried soft rock[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -8 .
[4] GONG Qiuming, WU Fan, YIN Lijun. Study on the rock mixed ground under disc cutter by linear cutting tests[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -11 .
[5] YAN Baoxu, ZHU Wancheng, HOU Chen. Theoretical analysis of maximum exposure height of the backfill when mining underground adjacent stope[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -11 .
[6] FU Helin, HUANG Zhen, WANG Hui, ZHANG Jiabing, SHI Yue. Accident analysis and management of metro safety[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -12 .
[7] JIAO Yuyong, ZHANG Weishe, OU Guangzhao, ZOU Junpeng, CHEN Guanghui. Review of the evolution and mitigation of the water-inrush disaster in drilling-and-blasting excavated deep-buried tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 36 -46 .
[8] HONG Kairong. Study on rock breaking and wear of tbm hob in high-strength high-abrasion stratum[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 76 -85 .
[9] RONG Xiaoli, WEN Zhu, HAO Yiqing, LU Hao, XIONG Ziming. Risk margin model of underground engineering based on possibility theory[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -10 .
[10] JING Hongwen, YU Liyuan, SU Haijian, GU jincai, Yin Qian. Development and application of catastrophic experiment system for water inrush in surrounding rock of deep tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 102 -110 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn