Please wait a minute...
 
隧道与地下工程灾害防治  2019, Vol. 1 Issue (3): 77-86    
  本期目录 | 过刊浏览 | 高级检索 |
考虑粗糙度影响的裂隙岩体开挖损伤区分布规律
赵志宏,郭铁成,林涛,陈思聪
清华大学土木工程系, 北京 100084
Characteristics of excavation damaged zone in fractured rock mass
ZHAO Zhihong, GUO Tiecheng, LIN Tao, CHEN Sicong
Department of Civil Engineering, Tsinghua University, Beijing 100084, China
下载:  PDF (6684KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 准确理解和预测开挖损伤区的分布特征与范围对于地下工程稳定性分析、支护优化设计等具有重要意义。给出裂隙岩体失稳、张开、剪切三类开挖损伤区的定义及其判别标准,并建立基于Barton-Bandis本构模型的裂隙岩体开挖损伤区离散元模拟方法。依托白鹤滩水电站4#引水隧洞建立离散裂隙网络模型,模拟得到的开挖损伤区深度与实测结果基本一致,证明本研究提出的裂隙岩体开挖损伤区离散元模拟方法的正确性。考虑裂隙岩体中粗糙度JRC(Joint Roughness Coefficient)的随机分布,张开区和剪切区范围随JRC平均值的增大而减小,高概率张开区和剪切区范围随着JRC分布标准差增大而增大。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵志宏
郭铁成
林涛
陈思聪
关键词:  裂隙岩体  开挖损伤区  离散元  粗糙度    
Abstract: An understanding of the characteristics and areas of the excavation damage zone plays an important role in stability assessment and support design. In this study, we presented the definitions and criteria for the three excavation damage zones in terms of failure, open and shear zones, as well as the discrete element method for simulating the excavation damage zone in fractured rocks based on the Barton-Bandis fracture constitutive model. We built a discrete fracture network model for the 4# diversion tunnel excavated in columnar jointed rocks at the Baihetan Hydropower Station, and the agreement of the depth of the excavation damage zone between numerical modeling and the field monitoring demonstrates that the proposed discrete element method for simulating the excavation damage zone in fractured rocks was an accurate and robust modeling tool. Considering the random distribution of JRC(Joint Roughness Coefficient)in fractured rock mass, the area of the excavation damage zone decreases with the increasing JRC average, and the depth of the excavation damage zone high probabilities increased with the increasing standard deviation of JRC distribution.
Key words:  fractured rocks    excavation damaged zone    discrete element method    joint roughness
收稿日期:  2018-09-16                出版日期:  2019-09-20      发布日期:  2019-11-13      期的出版日期:  2019-09-20
中图分类号:  TU43  
基金资助: 国家重点研发计划资助项目(2018YFC0407005);国家自然科学基金资助项目(51779123)
作者简介:  赵志宏(1983— ),男,山西平定人,博士,副教授,博士生导师,主要研究方向为岩石力学与地下工程. E-mail: zhzhao@tsinghua.edu.cn
引用本文:    
赵志宏, 郭铁成, 林涛, 陈思聪. 考虑粗糙度影响的裂隙岩体开挖损伤区分布规律[J]. 隧道与地下工程灾害防治, 2019, 1(3): 77-86.
ZHAO Zhihong, GUO Tiecheng, LIN Tao, CHEN Sicong. Characteristics of excavation damaged zone in fractured rock mass. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(3): 77-86.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2019/V1/I3/77
[1] TSANG C F, BERNIER F, DAVIES C. Geohydromechanical processes in the excavation damaged zone in crystalline rock, rock salt, and indurated and plastic clays—in the context of radioactive waste disposal[J]. International Journal of Rock Mechanics and Mining Sciences, 2005, 42(1): 109-125.
[2] HUDSON J A, BACKSTROM A, RUTQVIST J, et al. Characterising and modelling the excavation damaged zone in crystalline rock in the context of radioactive waste disposal[J]. Environmental Geology, 2009, 57(6): 1275-1297.
[3] BACKBLOM G, MARTIN C D. Recent experiments in hard rocks to study the excavation response: implications for the performance of a nuclear waste geological repository[J]. Tunnelling and Underground Space Technology, 1999, 14(3): 377-394.
[4] MARTINO J B, CHANDLER N A. Excavation-induced damage studies at the underground research laboratory[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(8): 1413-1426.
[5] LI S J, FENG X T, LI Z H, et al. Evolution of fractures in the excavation damaged zone of a deeply buried tunnel during TBM construction[J]. International Journal of Rock Mechanics and Mining Sciences, 2012, 55: 125-138.
[6] HOU Z M. Mechanical and hydraulic behavior of rock salt in the excavation disturbed zone around underground facilities[J]. International Journal of Rock Mechanics and Mining Sciences, 2003, 40(5): 725-738.
[7] MARTIN C D, KAISER P K, MCCREATH D R. Hoek-Brown parameters for predicting the depth of brittle failure around tunnels[J]. Canadian Geotechnical Journal, 1999, 36(1):136-151.
[8] DIEDERICHS M S, KAISER P K, EBERHARDT E. Damage initiation and propagation in hard rock during tunnelling and the influence of near-face stress rotation[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(5): 785-812.
[9] ZHU W C, BRUHNS O T. Simulating excavation damaged zone around a circular opening under hydromechanical conditions[J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(5): 815-830.
[10] SIREN T, KANTIA P, RINNE M. Considerations and observations of stress-induced and construction-induced excavation damage zone in crystalline rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 73: 165-174.
[11] PERRAS M A, DIEDERICHS M S. Predicting excavation damage zone depths in brittle rocks[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2016, 8(1): 60-74.
[12] YANG J H, JIANG Q H, ZHANG Q B, et al. Dynamic stress adjustment and rock damage during blasting excavation in a deep-buried circular tunnel[J]. Tunnelling and Underground Space Technology, 2018, 71: 591-604.
[13] 董方庭, 宋宏伟, 郭志宏, 等. 巷道围岩松动圈支护理论[J]. 煤炭学报, 1994, 19(1): 21-32. DONG Fangting, SONG Hongwei, GUO Zhihong, et al. Roadway support theory based on broken rock zone[J]. Journal of China Coal Society, 1994, 19(1): 21-32.
[14] 宋宏伟,郭志宏,周荣章,等. 围岩松动圈巷道支护理论的基本观点[J]. 建井技术, 1994(增刊1): 3-9. SONG Hongwei, GUO Zhihong, ZHOU Rongzhang, et al. Basic viewpoints of support theory for surrounding rock loose dynamic roadway[J]. Mine Construction Technology, 1994(Suppl.1): 3-9.
[15] 周希圣,宋宏伟. 国外围岩松动圈支护理论研究概况[J]. 建井技术, 1994(增刊1): 67-71. ZHOU Xisheng, SONG Hongwei. A survey of theoretical research on supporting rocks in the peripheral rocks[J]. Mine Construction Technology, 1994(Suppl.1): 67-71.
[16] 董方庭, 郭志宏. 巷道围岩松动圈支护理论[C] //中国岩石力学与工程学会软岩工程专业委员会第二届学术大会论文集. 北京:煤炭工业出版社, 1999: 62-70.
[17] 戴峰,李彪,徐奴文,等. 猴子岩水电站深埋地下厂房开挖损伤区特征分析[J]. 岩石力学与工程学报, 2015, 34(4): 735-746. DAI Feng, LI Biao, XU Nuwen, et al. Characteristics of damaged zones due to excavation in deep underground powerhouse at houziyan hydropower station[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(4): 735-746.
[18] 刘宁,张春生,褚卫江,等. 锦屏二级水电站深埋隧洞开挖损伤区特征分析[J]. 岩石力学与工程学报, 2013, 32(11): 2235-2241. LIU Ning, ZHANG Chunsheng, CHU Weijiang, et al. Excavation damaged zone characteristics in deep tunnel of Jinping ii hydropower station[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(11): 2235-2241.
[19] 刘宁,张春生,褚卫江. 深埋隧洞开挖损伤区的检测及特征分析[J]. 岩土力学, 2011, 32(增刊2): 526-531. LIU Ning, ZHANG Chunsheng, CHU Weijiang. Detection and analysis of excavation damage zone of deep tunnel[J]. Rock and Soil Mechanics, 2011, 32(Suppl.2): 526-531.
[20] 卢广亮,赵晓豹,龚秋明,等. TBM隧道围岩损伤区范围及渗透特性研究[J]. 高校地质学报, 2017, 23(1): 165-171. LU Guangliang, ZHAO Xiaobao, GONG Qiuming, et al. Study of the range and permeability characteristics of excavation-damaged zone of TBM tunnel[J]. Geological Journal of China Universities, 2017, 23(1): 165-171.
[21] 严鹏,卢文波,陈明,等. 深部岩体开挖方式对损伤区影响的试验研究[J]. 岩石力学与工程学报, 2011, 30(6): 1097-1106. YAN Peng, LU Wenbo, CHEN Ming, et al. In-situ test research on influence of excavation method on induced damage zone in deep tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(6): 1097-1106.
[22] 严鹏,卢文波,单治钢,等. 深埋隧洞爆破开挖损伤区检测及特性研究[J]. 岩石力学与工程学报, 2009, 28(8): 1552-1561. YAN Peng, LU Wenbo, SHAN Zhigang, et al. Detecting and study of blasting excavation-induced damage of deep tunnel and its characters[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(8): 1552-1561.
[23] 朱泽奇,盛谦,张勇慧,等. 大岗山水电站地下厂房洞室群围岩开挖损伤区研究[J]. 岩石力学与工程学报, 2013, 32(4): 734-739. ZHU Zeqi, SHENG Qian, ZHANG Yonghui, et al. Research on excavation damage zone of underground powerhouse of Dagangshan hydropower station[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(4): 734-739.
[24] 陈颙. 声发射技术在岩石力学研究中的应用[J]. 地球物理学报, 1977(4): 312-322. CHEN Yu. Application of acoustic emission technology in rock mechanics research[J]. Acta Geophysica Sinica, 1977(4): 312-322.
[25] 陈世万,杨春和,王贵宾,等. 北山坑探设施开挖损伤区现场声发射监测试验研究[J]. 岩土力学, 2017, 38(增刊2): 349-359. CHEN Shiwan, YANG Chunhe, WANG Guibin, et al. Experimental study of acoustic emission monitoring in situ excavation damage zone of Beishan exploration tunnel[J]. Rock and Soil Mechanics, 2017, 38(Suppl.2):349-359.
[26] 陈忠辉,傅宇方,唐春安. 岩石破裂声发射过程的围压效应[J]. 岩石力学与工程学报, 1997(1): 66-71. CHEN Zhonghui, FU Yufang, TANG Chun'an. Confining pressure effect of acoustic emission during rock failure[J]. Chinese Journal of Rock Mechanics and Engineering, 1997(1): 66-71.
[27] 陈忠辉,唐春安,傅宇方. 岩石试样声发射的加载体刚度效应[J]. 煤炭学报, 1996(4): 30-35. CHEN Zhonghui, TANG Chun'an, FU Yufang. Load body stiffness effect of acoustic emission of rock samples[J]. Journal of China Coal Society, 1996(4): 30-35.
[28] 陈忠辉,唐春安,徐小荷,等. 岩石声发射Kaiser效应的理论和实验研究[J]. 中国有色金属学报, 1997(1): 12-15. CHEN Zhonghui, TANG Chun'an, XU Xiaohe, et al. Theoretical and experimental study on the Kaiser effect of rock acoustic emission[J]. The Chinese Journal of Nonferrous Metals, 1997(1): 12-15.
[29] 唐春安. 岩石破裂过程中的灾变[M]. 北京:煤炭工业出版社, 1993. TANG Chun'an. Catastrophic during rock rupture[M]. Beijing: China Coal Industry Publishing House, 1993.
[30] 唐春安, 徐小荷. 缺陷的演化繁衍与Kaiser效应函数[J]. 地震研究, 1990, 13(2): 203-213. TANG Chun'an, XU Xiaohe. Evolution and propagation of material defects and Kaiser effect function[J]. Journal of Seismological Research, 1990, 13(2): 203-213.
[31] 李术才, 王汉鹏, 钱七虎, 等. 深部巷道围岩分区破裂化现象现场监测研究[J]. 岩石力学与工程学报, 2008, 27(8): 1545-1553. LI Shucai, WANG Hanpeng, QIAN Qihu, et al. In-situ monitoring research on zonal disintegration of surrounding rock mass in deep mine roadways[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(8): 1545-1553.
[32] 张玉军,李凤明. 高强度综放开采采动覆岩破坏高度及裂隙发育演化监测分析[J]. 岩石力学与工程学报, 2011, 30(增刊1): 2994-3001. ZHANG Yujun, LI Fengming. Monitoring analysis of fissure development evolution and height of overburden failure of high tension fully-mechanized caving mining[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(Suppl.1): 2994-3001.
[33] 李邵军,冯夏庭,张春生,等. 深埋隧洞TBM开挖损伤区形成与演化过程的数字钻孔摄像观测与分析[J]. 岩石力学与工程学报, 2010, 29(6): 1106-1112. LI Shaojun, FENG Xiating, ZHANG Chunsheng, et al. Testing on formation and evolution of TBM excavation damaged zone in deep-buried tunnel based on digital panoramic borehole camera technique[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(6): 1106-1112.
[34] 苏锐, 宗自华, 王驹. 高分辨率声波钻孔电视及其在核废物地质处置深部岩体研究中的应用[J]. 岩石力学与工程学报, 2005, 24(16):2922-2928. SU Rui, ZONG Zihua, WANG Ju. Acoustic borehole televiewer with high resolution and its application to deep formation for geological disposal of nuclear waste[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(16):2922-2928.
[35] 苏锐,宗自华,季瑞利,等. 综合钻孔测量技术在导水构造水文地质特征评价中的应用[J]. 岩石力学与工程学报, 2007(增刊2): 3866-3873. SU Rui, ZONG Zihua, JI Ruili, et al. Application of integrated borehole measurement techniques to hydrogeological characteristics evaluation of water-conductive fault[J]. Chinese Journal of Rock Mechanics and Engineering, 2007(Suppl.2): 3866-3873.
[36] 龚建伍, 夏才初. 鹤上隧道围岩松动圈测试与分析[J]. 地下空间与工程学报, 2007, 3(3): 475-478. GONG Jianwu, XIA Caichu. Measurement and analysis on releasing zone of surrounding rock in heshang tunnel[J]. Chinese Journal of Underground Space and Engineering, 2007, 3(3): 475-478.
[37] 李廷春, 李术才, 陈卫忠, 等. 厦门海底隧道的流固耦合分析[J]. 岩土工程学报, 2004, 26(3): 397-401. LI Tingchun, LI Shucai, CHEN Weizhong, et al. Coupled fluid-mechanical analysis of Xiamen subsea tunnel[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(3): 397-401.
[38] LEE I, NAM S. Effect of tunnel advance rate on seepage forces acting on the underwater tunnel face[J]. Tunnelling and Underground Space Technology, 2004, 19(3): 273-281.
[39] 李地元,李夕兵,张伟,等. 基于流固耦合理论的连拱隧道围岩稳定性分析[J]. 岩石力学与程学报, 2007,26(5):1056-1064. LI Diyuan, LI Xibing, ZHANG Wei, et al. Stability analysis of surrounding rock of multi-arch tunnel based on coupled fluid-solid theorem[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26:1056-1064.
[40] ZHU W C, BRUHNS O T. Simulating excavation damaged zone around a circular opening under hydromechanical conditions[J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(5): 815-830.
[41] WANG S H, LEE C I, RANJITH P G, et al. Modeling the effects of heterogeneity and anisotropy on the excavation damaged/disturbed zone(EDZ)[J]. Rock Mechanics and Rock Engineering, 2009, 42(2): 229-258.
[42] LISJAK A, TATONE B S A, MAHABADI O K, et al. Hybrid finite-discrete element simulation of the EDZ formation and mechanical sealing process around a microtunnel in opalinus clay[J]. Rock Mechanics and Rock Engineering, 2016, 49(5): 1849-1873.
[43] LEI Q H, LATHAM J, XIANG J S, et al. Role of natural fractures in damage evolution around tunnel excavation in fractured rocks[J]. Engineering Geology, 2017, 231: 100-113.
[44] YANG J H, YAO C, JIANG Q H, et al. 2D numerical analysis of rock damage induced by dynamic in-situ stress redistribution and blast loading in underground blasting excavation[J]. Tunnelling and Underground Space Technology, 2017, 70: 221-232.
[45] HUDSON J A, BÄCKSTRÖM A, RUTQVIST J, et al. Characterising and modelling the excavation damaged zone in crystalline rock in the context of radioactive waste disposal[J]. Environmental Geology, 2009, 57(6): 1275-1297.
[46] RUTQVIST J, BÄCKSTRÖM A, CHIJIMATSU M, et al. A multiple-code simulation study of the long-term EDZ evolution of geological nuclear waste repositories[J]. Environmental Geology, 2009, 57(6): 1313-1324.
[47] PELLET F, ROOSEFID M, DELERUYELLE F. On the 3D numerical modelling of the time-dependent development of the damage zone around underground galleries during and after excavation[J]. Tunnelling and Underground Space Technology, 2009, 24(6): 665-674.
[48] WEI C H, ZHU W C, YU Q L, et al. Numerical simulation of excavation damaged zone under coupled thermal—mechanical conditions with varying mechanical parameters[J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 75:169-181.
[49] SHEN B, BARTON N. The disturbed zone around tunnels in jointed rock masses[J]. International Journal of Rock Mechanics and Mining Sciences, 1997, 34(1):117-125.
[50] BHASIN R, HØEG K. Parametric study for a large cavern in jointed rock using a distinct element model(UDEC: BB)[J]. International Journal of Rock Mechanics and Mining Sciences, 1998, 35(1): 17-29.
[51] BARTON N, CHOUBEY V. The shear strength of rock joints in theory and practice[J]. Rock Mecanics, 1977, 10(1/2):1-54.
[52] BARTON N, BANDIS S. Some effects of scale on the shear strength of joints[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1980, 17(1):69-73.
[53] BARTON N, BANDIS S, BAKHTAR K. Strength, deformation and conductivity coupling of rock joints[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1985, 22(3):121-140.
[54] AYDIN A, BASU A. The Schmidt hammer in rock material characterization[J]. Engineering Geology, 2005, 81(1):1-14.
[55] ITASCA CONSULTING GROUP,INC. UDEC(universal distinct element code)user's manual [M]. 6 ed.Minnesota, USA: Itasca Consulting Group, Inc, 2014.
[56] HAO X J, FENG X T, YANG C X, et al. Analysis of EDZ development of columnar jointed rock mass in the Baihetan Diversion Tunnel[J]. Rock Mechanics and Rock Engineering, 2016, 49(4):1289-1312.
[57] 张宜虎, 周火明, 钟作武, 等. YXSW-12现场岩体真三轴试验系统及其应用[J]. 岩石力学与工程学报, 2011, 30(11): 2312-2320. ZHANG Yihu, ZHOU Huoming, ZHONG Zuowu, et al. In situ rock masses triaxial test system yxsw-12 and its application[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(11): 2312-2320.
[58] ASADOLLAHI P. Stability analysis of a single three dimensional rock block: effect of dilatancy and high-velocity water jet impact[J]. Dissertations and Theses-Gradworks, 2009.
[59] LUO S, ZHAO Z H, PENG H, et al. The role of fracture surface roughness in macroscopic fluid flow and heat transfer in fractured rocks[J]. International Journal of Rock Mechanics and Mining Sciences, 2016, 87: 29-38.
[1] 梁立唯, 刘春, 秦岩, 朱晨光, 邓尚. 基于MatDEM的盾构滚刀破岩离散元建模与数值模拟[J]. 隧道与地下工程灾害防治, 2019, 1(3): 116-122.
[1] QIAN Qihu. Scientific use of the urban underground space to construction the harmonious livable and beautiful city[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 1 -7 .
[2] WANG Zhechao, LI Wei, LIU Jie, GUO Jiafan, ZHANG Yupeng. A review on state-of-the-art of underground gas storage and causes of typical accidents[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -10 .
[3] LIU Ning, ZHANG Chunsheng, ZHANG Chuanqing, CHU Weijiang, CHEN Pingzhi, . Analysis on lining structure safety of large hydraulic tunnel in deep-buried soft rock[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -8 .
[4] GONG Qiuming, WU Fan, YIN Lijun. Study on the rock mixed ground under disc cutter by linear cutting tests[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -11 .
[5] YAN Baoxu, ZHU Wancheng, HOU Chen. Theoretical analysis of maximum exposure height of the backfill when mining underground adjacent stope[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -11 .
[6] FU Helin, HUANG Zhen, WANG Hui, ZHANG Jiabing, SHI Yue. Accident analysis and management of metro safety[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -12 .
[7] JIAO Yuyong, ZHANG Weishe, OU Guangzhao, ZOU Junpeng, CHEN Guanghui. Review of the evolution and mitigation of the water-inrush disaster in drilling-and-blasting excavated deep-buried tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 36 -46 .
[8] HONG Kairong. Study on rock breaking and wear of tbm hob in high-strength high-abrasion stratum[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 76 -85 .
[9] RONG Xiaoli, WEN Zhu, HAO Yiqing, LU Hao, XIONG Ziming. Risk margin model of underground engineering based on possibility theory[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 1 -10 .
[10] JING Hongwen, YU Liyuan, SU Haijian, GU jincai, Yin Qian. Development and application of catastrophic experiment system for water inrush in surrounding rock of deep tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 0, (): 102 -110 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn