Effects of stress path on true triaxial macro and micro deformation characteristics of sandstone
WANG Zhechao1, ZHOU Erkang1,2
1. Key Laboratory of Liaoning Province on Deep Engineering and Intelligent Technology, Northeastern University, Shenyang 110004, Liaoning, China; 2. State Key Laboratory of Hydraulic Engineering Simulation and Safety, School of Civil Engineering, Tianjin University, Tianjin 300350, China
Abstract: In order to study the influence of stress path on the true triaxial macroscopic and mesoscopic deformation characteristics of rocks, a calibrated granular flow numerical specimen was established using the discrete element method, and the loading planes were selected as meridian plane, <i>π</i>-plane and the fixed-axis plane. Numerical experiments with different stress paths were conducted on the numerical specimen to analyze the true triaxial deformation evolution of rocks from the macroscopic and mesoscopic viewpoints, and the numerical simulation results were compared with the D-P yield criterion to verify the correctness of the results. The research results showed that:for the same stress increment, the anisotropy of strain increment was the lowest when loading along the meridian plane, and the stress reached the yield plane fastest when loading along the <i>π</i>-plane, resulting in the largest strain increment and the two-way unloading in fixed-axis plane produced the largest strain increment in all stress path loading processes. The elastic-plastic deformation characteristics were analyzed using the relative imaging of stress space and yield surface, defining deformation anisotropy parameters; the correlation between stress and strain increment paths was quantitatively analyzed at the mesoscopic view level, and it was concluded that the number of contact force chain transformations and strain increment deflection angle were negatively correlated, and the numerical model produced the largest number of microcracks with the most obvious internal damage when loaded along the <i>π</i>-plane, and the smallest number of microcracks with the least internal damage when loaded along the fixed-axis plane.
王者超, 周尔康. 应力路径对砂岩真三轴变形宏细观特征影响[J]. 隧道与地下工程灾害防治, 2022, 4(2): 1-10.
WANG Zhechao, ZHOU Erkang. Effects of stress path on true triaxial macro and micro deformation characteristics of sandstone. Hazard Control in Tunnelling and Underground Engineering, 2022, 4(2): 1-10.
[1] 张俊文,范文兵,宋治祥, 等. 真三轴不同应力路径下深部砂岩力学特性[J]. 中国矿业大学学报, 2021, 50(1): 106-114. ZHANG Junwen, FAN Wenbing, SONG Zhixiang, et al. Mechanical characteristics of deep sandstone under different true triaxial stress paths[J]. Journal of China University of Mining & Technology, 2021, 50(1): 106-114. [2] 荣浩宇,李桂臣,赵光明,等. 不同应力路径下深部岩石真三轴卸荷特性试验[J]. 煤炭学报, 2020, 45(9): 3140-3149. RONG Haoyu, LI Guichen, ZHAO Guangming, et al. True triaxial test study on mechanical properties of deep rock mass in different stress paths[J]. Journal of China Coal Society, 2020, 45(9): 3140-3149. [3] 王乐华,牛草原,张冰祎,等. 不同应力路径下深埋软岩力学特性试验研究[J]. 岩石力学与工程学报, 2019, 38(5): 973-981. WANG Lehua, NIU Caoyuan, ZHANG Bingyi, et al. Experimental study on mechanical properties of deep-buried soft rock under different stress paths[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(5): 973-981. [4] 尤明庆,华安增. 应力路径对岩样强度和变形特性的影响[J].岩土工程学报, 1998(5): 3-5. YOU Mingqing, HUA Anzeng. Effect of stress path on strength and deformation of specimen[J]. Chinese Journal of Geotechnical Engineering, 1998(5): 3-5. [5] 尤明庆. 复杂路径下岩样的强度和变形特性[J]. 岩石力学与工程学报, 2002, 21(1): 23-28. YOU Mingqing. Strength and deformation of rock under complex loading path[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(1): 23-28. [6] 邱士利,冯夏庭,张传庆,等. 不同卸围压速率下深埋大理岩卸荷力学特性试验研究[J]. 岩石力学与工程学报, 2010, 29(9): 1807-1817. QIU Shili, FENG Xiating, ZHANG Chuanqing, et al. Experimental research on mechanical properties of deep-buried marble under different unloading rates of confining pressures[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(9): 1807-1817. [7] ZHANG K, ZHANG C S, QIU S L, et al. Effect of loading rates and stress paths on rock strengths: a novel approach based on experimental evidence[J]. Arabian Journal of Geosciences, 2019, 12(7): 234-241. [8] YANG S Q, JING H W. Evaluation on strength and deformation behavior of red sandstone under simple and complex loading paths[J]. Engineering Geology, 2013, 164: 1-17. [9] 李地元,孙志,李夕兵,等. 不同应力路径下花岗岩三轴加卸载力学响应及其破坏特征[J]. 岩石力学与工程学报, 2016, 35(增刊2): 3449-3457. LI Diyuan, SUN Zhi, LI Xibing, et al. Mechanical response and failure characteristics of granite under different stress paths in triaxial loading and unloading conditions[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(Suppl.2): 3449-3457. [10] 韩铁林,陈蕴生,宋勇军,等. 不同应力路径下砂岩力学特性的试验研究[J].岩石力学与工程学报, 2012, 31(增刊2): 3959-3966. HAN Tielin, CHEN Yunsheng, SONG Yongjun, et al. Experimental study of mechanical characteristics of sandstone under different loading paths[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(Suppl.2): 3959-3966. [11] 赵军,郭广涛,徐鼎平,等. 三轴及循环加卸载应力路径下深埋硬岩变形破坏特征试验研究[J]. 岩土力学, 2020, 41(5): 1521-1530. ZHAO Jun, GUO Guangtao, XU Dingping, et al. Experimental study of deformation and failure characteristics of deeply-buried hard rock under triaxial and cyclic loading and unloading stress paths[J]. Rock and Soil Mechanics, 2020, 41(5): 1521-1530. [12] YANG S Q, JING H W, WANG S Y. Experimental investigation on the strength, deformability, failure behavior and acoustic emission locations of red sandstone under triaxial compression[J]. Rock Mechanics and Rock Engineering, 2012, 45(4): 583-606. [13] 熊诗湖,周火明. 三峡永久船闸边坡岩体在复杂应力路径下的变形特性[J]. 岩石力学与工程学报, 2006,25(增刊2): 3636-3641. XIONG Shihu, ZHOU Huoming. Deformation properties of rock mass of TGP permanent ship lock slopes under complex stress paths[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(Suppl.2): 3636-3641. [14] 向天兵,冯夏庭,陈炳瑞,等. 开挖与支护应力路径下硬岩破坏过程的真三轴与声发射试验研究[J]. 岩土力学, 2008, 29(增刊1): 500-506. XIANG Tianbing, FENG Xiating, CHEN Bingrui, et al. True triaxial and acoustic emission experimental study of failure process of hard rock under excavating and supporting stress paths[J]. Rock and Soil Mechanics, 2008, 29(Suppl.1): 500-506. [15] LI Xibing, DU Kun, LI Diyuan. True triaxial strength and failure modes of cubic rock specimens with unloading the minor principal stress[J]. Rock Mechanics Rock Engineering, 2015, 48(6): 2185-2196. [16] 姜景山,左永振,程展林,等.应力状态对粗粒料力学特性影响的大型真三轴试验[J]. 岩土力学, 2020, 41(11): 3563-3572. JIANG Jingshan, ZUO Yongzhen, CHENG Zhanlin, et al. Effects of stress state on mechanical properties of coarse granular material using large-scale true triaxial tests[J]. Rock and Soil Mechanics, 2020, 41(11): 3563-3572. [17] NGUYEN V H, GLAND N, DAUTRIAT J, et al. Compaction, permeability evolution and stress path effects in unconsolidated sand and weakly consolidated sandstone[J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 67: 226-239. [18] 丛怡,贾乐鑫,丛宇,等. 不同应力路径下岩石破坏面细观形貌研究[J]. 防灾减灾工程学报, 2019, 39(6): 938-946. CONG Yi, JIA Lexin, CONG Yu, et al. Experimental study on meso-topography of rock surface under various stress path[J]. Journal of Disaster Prevention and Mitigation Engineering, 2019, 39(6): 938-946. [19] 丛宇,王在泉,郑颖人,等. 基于颗粒流原理的岩石类材料细观参数的试验研究[J]. 岩土工程学报, 2015, 37(6): 1031-1040. CONG Yu, WANG Zaiquan, ZHENG Yingren, et al. Experimental study on microscopic parameters of brittle materials based on particle flow theory[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(6): 1031-1040. [20] 高明忠,王明耀,谢晶,等. 深部煤岩原位扰动力学行为研究[J]. 煤炭学报, 2020, 45(8): 2691-2703. GAO Mingzhong, WANG Mingyao, XIE Jing, et al. In-situ disturbed mechanical behavior of deep coal rock[J]. Journal of China Coal Society, 2020, 45(8): 2691-2703. [21] 楚锡华,徐远杰.基于Lode参数的应力状态描述及D-P系列准则[J]. 武汉理工大学学报, 2009, 31(16): 82-86. CHU Xihua, XU Yuanjie. Description of stress states with lode parameters and study on D-P criteria[J]. Journal of Wuhan University of Technology, 2009, 31(16): 82-86. [22] 郑颖人.岩土塑性力学的新进展:广义塑性力学[J].岩土工程学报, 2003,25(1): 1-10. ZHENG Yingren. New development of geotechnical plastic mechanics: generalized plastic mechanics[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(1): 1-10. [23] ANANDARAJAH A, SOBHAN K, KUGANENTHIRA N. Incremental stress-strain behavior of granular soil[J]. Journal of Geotechnical Engineering, 1995, 121(1): 57-68. [24] 蔡改贫,赵小涛.基于细观力学的矿石颗粒破碎特性研究[J].应用力学学报,2020,37(4):1792-1797. CAI Gaipin, ZHAO Xiaotao. Study on the fracture characteristics of ore particles based on micromechanics[J]. Chinese Journal of Applied Mechanics, 2020, 37(4): 1792-1797. [25] 孙其诚,王光谦.静态堆积颗粒中的力链分布[J].物理学报,2008, 57(8):4667-4674. SUN Qicheng, WANG Guangqian. Force distribution in static granular matter in two dimensions[J]. Acta Physica Sinica, 2008, 57(8): 4667-4674.