Please wait a minute...
 
隧道与地下工程灾害防治  2023, Vol. 5 Issue (2): 24-32    DOI: 10.19952/j.cnki.2096-5052.2023.02.02
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
复杂应力路径下波纹钢加固盾构隧道数值分析
魏纲1,2,徐天宝3,张治国4
1.浙大城市学院土木工程系, 浙江 杭州 310015;2.浙江省城市盾构隧道安全建造与智能养护重点实验室, 浙江 杭州 310015;3.安徽理工大学土木建筑学院, 安徽 淮南 232001;4.上海理工大学环境与建筑学院, 上海 200093
Numerical analysis of corrugated steel reinforced shield tunnel under complex stress path
WEI Gang1,2, XU Tianbao3, ZHANG Zhiguo4
1. Department of Civil Engineering, Hangzhou City University, Hangzhou 310015, Zhejiang, China;
2. Key Laboratory of Safe Construction and Intelligent Maintenance for Urban Shield Tunnels of Zhejiang Province, Hangzhou 310015, Zhejiang, China;
3. School of Civil Engineering and Architecture, Anhui University of Science and Technology, Huainan 232001, Anhui, China;
4. School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
下载:  PDF (6844KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 为探究复杂应力路径下波纹钢加固盾构隧道受力变形规律的异同和加固效果,基于MIDAS GTS NX有限元软件构建三环错缝精细化模型,从管片加固前后收敛变形量、波纹钢应力、管片塑性变形等角度衡量波纹钢加固效果,对比分析堆载、卸载工况下波纹钢加固盾构隧道受力变形演化规律。研究结果表明:复杂受荷环境下管片最大收敛变形部位分布不同,堆载以腰部收敛为主,卸载以顶底部竖向收敛为主;卸载下施作波纹钢加固效果优于堆载工况,最大加固效率可达70%;堆载与卸载工况下,不同板厚波纹钢加固管片的收敛变形、波纹钢应力发展规律类似且均呈现线性增长趋势;波纹钢能有效延缓混凝土塑性发展态势,但对于卸载工况下的环间错台抑制能力较弱。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
魏纲
徐天宝
张治国
关键词:  盾构隧道  波纹钢加固  收敛变形  塑性发展  复杂应力路径    
Abstract: In order to probe into the similarities and differences of the stress-deformation law and the reinforcement effect of shield tunnel strengthened with corrugated steel under complex stress paths, a refined model of three-ring staggered joints was established based on the finite element software MIDAS GTS NX, the effect of corrugated steel reinforcement was evaluated from the angle of convergent deformation, corrugated steel stress and plastic deformation of segments before and after reinforcement, the stress and deformation evolution of shield tunnel strengthened with corrugated steel under loading and unloading conditions were analyzed. The results showed that the distribution of the maximum convergent deformation was different in the complex loading environment. The waist was the main part of the loading, and the top and bottom was the main part of the unloading under unloading, the effect of corrugated steel reinforcement was better than that under surcharge loading, and the maximum reinforcement efficiency could reach 70%, the convergent deformation and the stress development of corrugated steel with different plate thicknesses were similar and showed a linear increasing trend, while corrugated steel could effectively delay the plastic development of concrete, however, the ability of stagger suppression between rings under unloading condition was weak.
Key words:  shield tunnel    corrugated steel reinforcement    convergent deformation    plastic development    complex stress path
收稿日期:  2023-04-10      修回日期:  2023-05-20      发布日期:  2023-06-20     
中图分类号:  U25  
基金资助: 浙江省基础公益研究计划资助项目(LGF22E080012)
作者简介:  魏纲(1977— ),男,浙江杭州人,博士,教授,博士生导师,主要研究方向为地下隧道和岩土工程. E-mail:weig@hzcu.edu.cn
引用本文:    
魏纲, 徐天宝, 张治国. 复杂应力路径下波纹钢加固盾构隧道数值分析[J]. 隧道与地下工程灾害防治, 2023, 5(2): 24-32.
WEI Gang, XU Tianbao, ZHANG Zhiguo. Numerical analysis of corrugated steel reinforced shield tunnel under complex stress path. Hazard Control in Tunnelling and Underground Engineering, 2023, 5(2): 24-32.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2023/V5/I2/24
[1] 冯爱军. 中国城市轨道交通2021年数据统计与发展分析[J]. 隧道建设(中英文), 2022, 42(2): 336-341. FENG Aijun. Data statistics and development analysis of urban rail transit in China in 2021[J]. Tunnel Construction, 2022, 42(2): 336-341.
[2] 向青青,魏纲,周鑫鑫. 整环盾构隧道管片原型加载系统的研究综述[J]. 低温建筑技术, 2020, 42(4): 81-86. XIANG Qingqing, WEI Gang, ZHOU Xinxin. Research on prototype loading system for segment of integral ring shield tunnel: a review[J]. Low Temperature Architecture Technology, 2020, 42(4): 81-86.
[3] 柳献,张浩立,唐敏,等. 内张钢圈加固盾构隧道结构承载能力的试验研究:半环加固法[J]. 现代隧道技术, 2014, 51(3): 131-137. LIU Xian, ZHANG Haoli, TANG Min, et al. Experimental study of the ultimate bearing capacity of a shield tunnel reinforced by a semi-ring steel plate[J]. Modern Tunnelling Technology, 2014, 51(3): 131-137.
[4] 柳献,张乐乐,李刚, 等. 复合腔体加固盾构隧道结构承载能力的试验研究[J]. 城市轨道交通研究, 2015, 18(7): 52-57. LIU Xian, ZHANG Lele, LI Gang, et al. Experimental study on the ultimate bearing capacity of shield tunnel composite cavity reinforcement[J]. Urban Mass Transit, 2015, 18(7): 52-57.
[5] 马庆雷. 超高性能混凝土(UHPC)加固盾构隧道管片力学性能研究[D]. 长沙: 湖南大学, 2021. MA Qinglei. Study on mechanical properties of shield tunnel segment strengthened with ultra-high performance concrete(UHPC)[D]. Changsha: Hunan University, 2021.
[6] 臧建波. 盾构隧道管片纵缝接头的加固试验与分析[D]. 广州: 华南理工大学, 2016. ZANG Jianbo. Test and analysis on reinforcement of longitudinal joint of segment in shield tunnel[D]. Guangzhou: South China University of Technology, 2016.
[7] 陈仁朋,鲁立,张阳,等. 盾构管片UHPC加固技术及力学性能分析[J].工程力学, 2019, 36(11): 41-49. CHEN Renpeng, LU Li, ZHANG Yang, et al. Reinforced technology and mechanical properties of shield tunnel lining with uhpc[J]. Engineering Mechanics, 2019, 36(11): 41-49.
[8] 翟五洲,翟一欣,张东明,等. 盾构隧道钢板加固衬砌管片环缝抗剪性能数值模拟研究[J]. 岩土工程学报, 2019, 41(增刊2): 235-239. ZHAI Wuzhou, ZHAI Yixin, ZHANG Dongming, et al. Numerical study on shearing performance of seel plate strengthened circumferential joints of segmental tunnel linings[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(Suppl.2): 235-239.
[9] 刘梓圣, 张冬梅. 软土盾构隧道芳纶布加固机理和效果研究[J].现代隧道技术, 2014, 51(5): 155-160. LIU Zisheng, ZHANG Dongmei. The mechanism and effects of AFRP reinforcement for a shield tunnel in soft soil[J]. Modern Tunnelling Technology, 2014, 51(5): 155-160.
[10] 郭英杰, 丁文其, 李硕标, 等. 新型波纹不锈钢加固既有地铁盾构隧道数值分析[J]. 现代隧道技术, 2021, 58(增刊1): 40-48. GUO Yingjie, DING Wenqi, LI Shuobiao, et al. Numerical analysis of existing metro shield tunnel strengthened with new corrugated stainless steel[J]. Modern Tunnelling Technology, 2021, 58(Suppl.1): 40-48.
[11] YU Chengshuo, DING Wenqi, WU Tianxiang, et al. Study on calculation method of new corrugated steel reinforcement structure of highway tunnel[J]. IOP Conference Series: Materials Science and Engineering, 2020, 741: 012073.
[12] SUN Keguo, HONG Yiqin, XU Weiping, et al. Analysis and prediction of mechanical characteristics of corrugated plate as primary support in tunnels[J]. Tunnelling and Underground Space Technology, 2021, 111: 103845.
[13] 魏纲, 厉京, 宣海力, 等. 大型深基坑开挖对旁边地铁盾构隧道影响的实测分析[J]. 铁道科学与工程学报, 2018, 15(3): 718-726. WEI Gang, LI Jing, XUAN Haili, et al. Monitoring data analysis on the influence of large deep foundation pit excavation on nearby metro shield tunnel[J]. Journal of Railway Science and Engineering, 2018, 15(3): 718-726.
[14] 王钦, 魏纲, 徐天宝, 等. 卸载工况下槽钢加固盾构管片的受力性能数值分析[J]. 低温建筑技术, 2022, 44(9): 111-116. WANG Qin, WEI Gang, XU Tianbao, et al. Numerical analysis of mechanical performance of shield segment strengthened by channel steel under unloading condition[J]. Low Temperature Architecture Technology, 2022, 44(9): 111-116.
[15] 刘亚宇, 刘加湾, 魏纲, 等. 旁侧基坑开挖偏心卸载下盾构隧道横断面受力变形研究[J]. 隧道建设(中英文), 2020, 40(9):1333-1340. LIU Yayu, LIU Jiawan, WEI Gang, et al. Study on mechanical deformation of shield tunnel cross-section under eccentric unloading of side foundation pit excavation[J]. Tunnel Construction, 2020, 40(9): 1333-1340.
[16] 魏纲, 张鑫海, 林心蓓, 等. 基坑开挖引起的旁侧盾构隧道横向受力变化研究[J]. 岩土力学, 2020, 41(2): 635-644. WEI Gang, ZHANG Xinhai, LIN Xinbei, et al. Variations of transverse forces on nearby shield tunnel caused by foundation pits excavation[J]. Rock and Soil Mechanics, 2020, 41(2): 635-644.
[17] 浙江省建筑设计研究院,杭州市地铁集团有限责任公司.城市轨道交通结构安全保护技术规程:DB33/T1139—2017[S].杭州:浙江省住房和城乡建设厅, 2017.
[18] 乌延玲. 公路钢波纹管涵洞受力与变形特性及应用研究[D].西安: 长安大学, 2012. WU Yanling. Study on mechanical and deformation characteristics and application of highway steel corrugated pipe culvert[D]. Xi'an: Chang'an University, 2012.
[1] 王智, 刘祥勇, 朱先发, 洪小星, 沈一鸣, 张冰利. 小曲率半径隧道施工对盾构管片结构影响[J]. 隧道与地下工程灾害防治, 2023, 5(1): 45-54.
[2] 韩兴博, 陈子明, 苏恩杰, 梁晓明, 宋桂峰, 叶飞. 盾构隧道围岩压力分布规律及作用模式[J]. 隧道与地下工程灾害防治, 2022, 4(4): 34-43.
[3] 喻伟, 林赞权, 朱彬彬, 汪元冶, 丁文其, 乔亚飞, 张晓东, 龚琛杰. 盾构隧道防水密封垫材料的高温老化后性能[J]. 隧道与地下工程灾害防治, 2022, 4(4): 52-58.
[4] 潘秋景, 李晓宙, 黄杉, 汪来, 王树英, 方国光. 机器学习在盾构隧道智能施工中的应用——综述与展望[J]. 隧道与地下工程灾害防治, 2022, 4(3): 10-30.
[5] 赵辰洋, 罗毛毛, 邱静怡, 倪芃芃, 赵锋烽. 盾构隧道施工引起地层变形预测方法综述[J]. 隧道与地下工程灾害防治, 2022, 4(3): 31-46.
[6] 张治国, 程志翔, 陈杰, 吴钟腾, 李云正. 盾构隧道接缝渗漏水诱发既有管线变形模型试验[J]. 隧道与地下工程灾害防治, 2022, 4(3): 77-91.
[7] 刘祥勇, 张鑫, 王军, 赵涛宁, 朱先发. 盾构施工对邻近建筑物群结构影响评价[J]. 隧道与地下工程灾害防治, 2022, 4(3): 99-106.
[8] 丁智, 李鑫家, 张霄. 基于机器学习的盾构掘进地表变形预测研究与展望[J]. 隧道与地下工程灾害防治, 2022, 4(3): 1-9.
[9] 吕玺琳, 赵庾成, 曾盛. 砂层中盾构隧道开挖面稳定性物理模型试验[J]. 隧道与地下工程灾害防治, 2022, 4(3): 67-76.
[10] 黄昕, 谷冠思, 张子新, 李昀. 考虑渗流的泥水平衡盾构隧道稳定性数值模拟[J]. 隧道与地下工程灾害防治, 2022, 4(2): 28-38.
[11] 许有俊, 王智广, 张旭, 郭飞, 高胜雷, 杨昆. 小转弯半径盾构隧道施工引起的地层变形特征[J]. 隧道与地下工程灾害防治, 2022, 4(2): 11-18.
[12] 陈峰军, 宗军良, 王祺, 禹海涛. 地面出入式超浅埋盾构隧道静力响应模型试验[J]. 隧道与地下工程灾害防治, 2022, 4(2): 66-72.
[13] 马少俊, 李鑫家, 王乔坎, 丁智. 某深基坑开挖对邻近既有盾构隧道影响实测分析[J]. 隧道与地下工程灾害防治, 2022, 4(1): 86-94.
[14] 涂智溢, 郭洪雨, 孙飞, 钟方杰, 郑浩龙, 张哲. 闹市区复杂环境下大直径盾构小净距下穿运营地铁隧道的应对措施及分析[J]. 隧道与地下工程灾害防治, 2021, 3(4): 75-84.
[15] 张鸿勇, 张艳杰, 刘春, 施斌, 曹政. 基于离散元孔隙密度流法的地铁隧道收敛变形注浆整治分析[J]. 隧道与地下工程灾害防治, 2021, 3(3): 100-110.
[1] QIAN Qihu. Scientific use of the urban underground space to construction the harmonious livable and beautiful city[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 1 -7 .
[2] DENG Mingjiang, LIU Bin. Challenges, countermeasures and development direction of geological forward-prospecting for TBM cluster tunneling in super-long tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 8 -19 .
[3] DING Xiuli, ZHANG Yuting, ZHANG Chuanjian, YAN Tianyou, HUANG Shuling. Review on countermeasures and their adaptability evaluation to tunnels crossing active faults[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 20 -35 .
[4] JIAO Yuyong, ZHANG Weishe, OU Guangzhao, ZOU Junpeng, CHEN Guanghui. Review of the evolution and mitigation of the water-inrush disaster in drilling-and-blasting excavated deep-buried tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 36 -46 .
[5] ZHANG Qingsong, ZHANG Lianzhen, LI Peng, FENG Xiao. New progress in grouting reinforcement theory of water-rich soft stratum in underground engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 47 -57 .
[6] XIA Kaiwen, XU Ying, CHEN Rong. Dynamic tests of rocks subjected to simulated deep underground environments[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 58 -75 .
[7] HONG Kairong. Study on rock breaking and wear of TBM hob in high-strength high-abrasion stratum[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 76 -85 .
[8] TAN Zhongsheng. Application experimental study of high-strength lattice girders with heat treatment in tunnel engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 86 -92 .
[9] CHEN Jianxun, LUO Yanbin. The stability of structure and its control technology for lager-span loess tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 93 -101 .
[10] JING Hongwen, YU Liyuan, SU Haijian, GU Jincai, YIN Qian. Development and application of catastrophic experiment system for water inrush in surrounding rock of deep tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 102 -110 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn