Please wait a minute...
 
隧道与地下工程灾害防治  2022, Vol. 4 Issue (4): 1-10    DOI: 10.19952/j.cnki.2096-5052.2022.04.01
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
引绰济辽工程二标隧洞段TBM滚刀磨损规律
龚秋明1,谢兴飞1,黄流1,兴海2,吴根生2
1. 北京工业大学城市与工程安全减灾教育部重点实验室, 北京 100124; 2. 中国水利水电第六工程局有限公司, 辽宁 沈阳 110179
Wear law of TBM cutter in the tunnel section of the second bid of the Chaoer River to Xiliao River Water Conveyance Project
GONG Qiuming1, XIE Xingfei1, HUANG Liu1, XING Hai2, WU Gensheng2
1. Key Laboratory of Urban Security and Disaster Engineering of China Ministry of Education, Beijing University of Technology, Beijing 100124, China;
2. Sinohydro Bureau 6 Co., Ltd., Shenyang 110179, Liaoning, China
下载:  PDF (10037KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过在引绰济辽工程二标隧洞段隧道掘进机(tunnel boring machine, TBM)刀盘上搭载刀盘状态监测系统,实现TBM掘进中滚刀磨损的实时监测。基于监测系统的实时滚刀磨损记录,获得单滚刀全寿命磨损规律。将单滚刀全寿命磨损过程分为低速磨损、加速磨损和均速磨损3个阶段,磨损过程中刃宽变化对滚刀速率影响显著。通过在TBM掘进过程中跟踪记录岩体条件,结合TBM掘进参数和监测数据,分析地层参数和掘进参数对滚刀磨损速率的影响。结果表明:滚刀破岩体积磨损速率较适合用于衡量滚刀磨损速率;岩石磨蚀性、岩体完整性和岩体可掘性指数是影响滚刀磨损速率的关键参数,可为将来精细滚刀磨损预测模型研究提供依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
龚秋明
谢兴飞
黄流
兴海
吴根生
关键词:  滚刀磨损规律  引绰济辽工程  TBM  刀盘状态监测  影响因素    
Abstract: The real-time monitoring of the cutter wear was realized during TBM tunneling by installing a cutterhead working status monitoring system on the cutterhead of TBM in the tunnel section of the second bid, the Chaoer River to Xiliao River Water Conveyance Project. The whole life wear process curve for a single cutter was obtained on basis of the monitored data. The wear process of a single cutter could be divided into three stages, namely low cutter wear rate at the initiation stage, acceleration cutter wear stage and uniform cutter wear stage. The cutter edge shape had a significance impact on the cutter wear curve. Based on the rock mass conditions recorded during TBM tunneling process, combined with TBM operating parameters and monitoring data, the influence of the rock mass parameters and TBM operating parameters on the cutter wear rate was analyzed. The results showed that the cutter wear value per unit broken rock volume was suitable to measure the cutter wear rate, and the rock abrasivity, rock mass integrity and field penetration index were the key parameters to affect the cutter wear rate, which could provide a basis for the accurate cutter wear prediction model in the future research.
Key words:  cutter wear law    the Chaoer River to Xiliao River Water Conveyance Project    TBM    cutterhead working status monitoring    influence factor
收稿日期:  2022-03-30      修回日期:  2022-04-27      发布日期:  2022-12-20     
中图分类号:  U455  
作者简介:  龚秋明(1969— ),男,湖南安化人,博士,教授,博士生导师,主要研究方向为掘进机、盾构机. E-mail:gongqiuming@bjut.edu.cn
引用本文:    
龚秋明, 谢兴飞, 黄流, 兴海, 吴根生. 引绰济辽工程二标隧洞段TBM滚刀磨损规律[J]. 隧道与地下工程灾害防治, 2022, 4(4): 1-10.
GONG Qiuming, XIE Xingfei, HUANG Liu, XING Hai, WU Gensheng. Wear law of TBM cutter in the tunnel section of the second bid of the Chaoer River to Xiliao River Water Conveyance Project. Hazard Control in Tunnelling and Underground Engineering, 2022, 4(4): 1-10.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2022/V4/I4/1
[1] LIU Q S, LIU J P, PAN Y C, et al. A wear rule and cutter life prediction model of a 20-in. TBM cutter for granite: a case study of a water conveyance tunnel in China[J]. Rock Mechanics and Rock Engineering, 2017, 50(5):1303-1320.
[2] 谭青,孙鑫健,夏毅敏,等. TBM盘形滚刀磨损预测模型[J]. 中南大学学报(自然科学版), 2017, 48(1):54-60. TAN Qing, SUN Xinjian, XIA Yimin, et al. A wear prediction model of disc cutter for TBM[J]. Journal of Central South University(Science and Technology), 2017, 48(1):54-60.
[3] HASSANPOUR J, ROSTAMI J, AZALIS T, et al. Introduction of an empirical TBM cutter wear prediction model for pyroclastic and mafic igneous rocks: a case history of Karaj Water Conveyance Tunnel, Iran[J]. Tunnelling and Underground Space Technology, 2014, 43:222-231.
[4] GEHRING K. Prognosis of advanced rates and wear for underground mechanized excavations(in German)[J]. Felsbau, 1995, 13(6):439-448.
[5] 杨媛媛,黄宏伟. 围岩分类在TBM滚刀寿命预测中的应用[J]. 地下空间与工程学报, 2005, 1(5):721-724. YANG Yuanyuan, HUANG Hongwei. Application of rock mass classification in cutter life prediction of TBM[J]. Chinese Journal of Underground Space and Engineering, 2005, 1(5):721-724.
[6] 杨延栋,陈馈,郭璐,等. 全断面岩石隧道掘进机滚刀磨损影响因素分析[J]. 隧道建设, 2016, 11(36):1394-1400. YANG Yandong, CHEN Kui, GUO Lu, et al. Analysis of influencing factors of wear of disc cutter of full-face hard rock tunnel boring machine[J]. Tunnel Construction, 2016, 11(36):1394-1400.
[7] 吴俊,袁大军. 大连极硬岩地层复合盾构刀具磨损的分析与预测[J]. 土木工程学报, 2015, 48(增刊1):250-255. WU Jun, YUAN Dajun. Analysis and prediction on composite shield cutters wear in extremely hard rock in Dalian metro[J]. China Civil Engineering Journal, 2015, 48(Suppl.1):250-255.
[8] 乔世范,王超,刘志新,等. 基于磨粒磨损机理的全断面隧道掘进机滚刀寿命预测[J]. 吉林大学学报(工学版), 2020, 50(6):2068-2073. QIAO Shifan, WANG Chao, LIU Zhixin, et al. Life prediction of tunnel boring machine hob based on abrasive wear mechanism[J]. Journal of Jilin University(Engineering and Technology Edition), 2020, 50(6): 2068-2073.
[9] 王旭,赵羽,张宝刚,等. TBM滚刀刀圈磨损机理研究[J]. 现代隧道技术, 2010, 47(5):15-19. WANG Xu, ZHAO Yu, ZHANG Baogang, et al. Research on the ring wear mechanism of TBM disc cutter[J]. Modern Tunnelling Technology, 2010, 47(5):15-19.
[10] 李凯磊. TBM刀具消耗分析研究[D]. 石家庄: 石家庄铁道大学, 2015. LI Kailei. Research on TBM disc cutter consumption analysis[D]. Shijiazhuang: Shijiazhuang Tiedao University, 2015.
[11] SHANANAN A. Cutter instrumentation system for tunnel boring machines[J]. North American Tunneling 2010 Proceedings, 2010:110-115.
[12] 龚秋明,王庆欢,王杜娟,等. 盾构隧道施工刀盘状态实时监测系统研制[J]. 现代隧道技术, 2021, 58(2):41-50. GONG Qiuming, WANG Qinghuan, WANG Dujuan, et al. Development of a real-time monitoring system of cutterhead conditions in shield tunnelling[J]. Modern Tunnelling Technology, 2021, 58(2):41-50.
[13] GONG Q M, WU F, WANG D J, et al. Development and application of cutterhead working status monitoring system for shield TBM tunnelling[J]. Rock Mechanics and Rock Engineering, 2021, 54(1):1731-1757.
[14] 李建斌,龚秋明,刘斌. 隧道掘进机辅助智能化施工技术[M]. 北京: 科学出版社, 2020.
[15] GONG Q M, ZHAO J, JIANG Y S. In situ TBM penetration tests and rock mass boreability analysis in hard rock tunnels[J]. Tunnelling and Underground Space Technology, 2007, 22(3):303-316.
[16] HAMILTON W, DOLLINGER G. Optimizing tunnel boring machine and cutter design for greater boreability[C] //Proceedings of the Rapid Excavation and Tunneling Conference. Atlanta, USA: [s. n.] , 1979:280-296.
[1] 杨继华, 闫长斌, 齐三红, 郭卫新, 杨风威. 不良地质段双护盾TBM施工综合处理技术[J]. 隧道与地下工程灾害防治, 2023, 5(2): 59-70.
[2] 王明耀,鲁义强,贺飞,李潮. 软岩大变形分类分级方法及TBM适应性[J]. 隧道与地下工程灾害防治, 2022, 4(4): 79-90.
[3] 钟长平, 竺维彬, 王俊彬, 谢文达. 双模盾构机/TBM的原理与应用[J]. 隧道与地下工程灾害防治, 2022, 4(3): 47-66.
[4] 赵毅. TBM强岩爆掘进段小导洞超前应力释放施工技术[J]. 隧道与地下工程灾害防治, 2022, 4(1): 78-85.
[5] 唐旭海, 邵祖亮, 许婧璟, 张怡恒. 高温-液氮循环处理下花岗岩损伤劣化机制[J]. 隧道与地下工程灾害防治, 2022, 4(1): 18-28.
[6] 温森,吴斐,李胜,张洛萌. 不同侧压系数和岩石强度下TBM滚刀破岩效率的数值模拟[J]. 隧道与地下工程灾害防治, 2021, 3(4): 9-19.
[7] 王玉杰,沈强,曹瑞琅,龚秋明,刘立鹏. 大变形围岩TBM施工适应性分类标准研究[J]. 隧道与地下工程灾害防治, 2020, 2(4): 37-43.
[8] 李鹏飞,刘宏翔,赵勇,刘建友,王帆. 隧道穿越断层破碎带防突水最小安全厚度及其影响因素[J]. 隧道与地下工程灾害防治, 2020, 2(3): 77-84.
[9] 徐琛,刘晓丽,张鲁军,毛宗原,周建军,王思敬. 耦合地质模型的TBM隧道施工过程进度仿真预测[J]. 隧道与地下工程灾害防治, 2020, 2(2): 41-46.
[10] 李树忱,万泽恩,商金华,赵世森,杨晓东,李阳. 盾构/TBM渣土改良与盾尾密封技术研究进展[J]. 隧道与地下工程灾害防治, 2019, 1(4): 33-48.
[11] 谭忠盛. 隧道与地下工程建设理念及关键技术——记王梦恕院士的主要学术思想和科研成就[J]. 隧道与地下工程灾害防治, 2019, 1(2): 1-6.
[12] 邓铭江, 刘斌. 超特长隧洞TBM集群施工超前地质预报的挑战、对策与发展方向[J]. 隧道与地下工程灾害防治, 2019, 1(1): 8-19.
[13] 洪开荣. 高强度高磨蚀地层TBM滚刀破岩与磨损研究[J]. 隧道与地下工程灾害防治, 2019, 1(1): 76-85.
[1] QIAN Qihu. Scientific use of the urban underground space to construction the harmonious livable and beautiful city[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 1 -7 .
[2] DENG Mingjiang, LIU Bin. Challenges, countermeasures and development direction of geological forward-prospecting for TBM cluster tunneling in super-long tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 8 -19 .
[3] DING Xiuli, ZHANG Yuting, ZHANG Chuanjian, YAN Tianyou, HUANG Shuling. Review on countermeasures and their adaptability evaluation to tunnels crossing active faults[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 20 -35 .
[4] JIAO Yuyong, ZHANG Weishe, OU Guangzhao, ZOU Junpeng, CHEN Guanghui. Review of the evolution and mitigation of the water-inrush disaster in drilling-and-blasting excavated deep-buried tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 36 -46 .
[5] ZHANG Qingsong, ZHANG Lianzhen, LI Peng, FENG Xiao. New progress in grouting reinforcement theory of water-rich soft stratum in underground engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 47 -57 .
[6] XIA Kaiwen, XU Ying, CHEN Rong. Dynamic tests of rocks subjected to simulated deep underground environments[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 58 -75 .
[7] HONG Kairong. Study on rock breaking and wear of TBM hob in high-strength high-abrasion stratum[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 76 -85 .
[8] TAN Zhongsheng. Application experimental study of high-strength lattice girders with heat treatment in tunnel engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 86 -92 .
[9] CHEN Jianxun, LUO Yanbin. The stability of structure and its control technology for lager-span loess tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 93 -101 .
[10] JING Hongwen, YU Liyuan, SU Haijian, GU Jincai, YIN Qian. Development and application of catastrophic experiment system for water inrush in surrounding rock of deep tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 102 -110 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn