Please wait a minute...
 
隧道与地下工程灾害防治  2022, Vol. 4 Issue (4): 28-33    DOI: 10.19952/j.cnki.2096-5052.2022.04.04
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
地铁盾构隧道渗漏水病害图像识别算法
方恩权1,王耀东2,3*,李星言2,马农杰2
1.广州地铁集团有限公司国家工程研究中心, 广东 广州 510355;2.北京交通大学机械与电子控制工程学院, 北京 100044;3.北京交通大学智慧高铁系统前沿科学中心, 北京 100044
Algorithms of leakage disease images recognition in subway tunnel
FANG Enquan1, WANG Yaodong2,3*, LI Xingyan2, MA Nongjie2
1.National Engineering Research Center of Guangzhou Metro Group Co., Ltd., Guangzhou 510355, Guangdong, China;
2. School of Mechanical and Electronic Control Engineering, Beijing Jiaotong University, Beijing 100044, China;
3. Frontiers Science Center for Smart High-speed Railway System, Beijing Jiaotong University, Beijing 100044, China
下载:  PDF (2750KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对地铁隧道复杂渗漏水图像区域识别准确度低的问题,基于深度学习的渗漏水病害图像智能识别算法理论,分别研究并搭建U形网络(U-Net)和金字塔场景解析网络(PSP-Net)进行对比试验。基于采集的地铁隧道图像,建立复杂隧道渗漏水病害图像样本数据集,该数据集包含5 000张地铁隧道病害图像,其中4 000张人工标注图像数据,针对渗漏水图像特征,进行U-Net和PSP-Net网络模型的构建,同时使用自制数据集进行渗漏水图像的对比试验。通过对U-Net和PSP-Net网络的预测结果进行准确度评估,分析两者在渗漏水病害识别的性能,U-Net结构对渗漏水目标具有更强的覆盖性,适用于渗漏水区域的快速巡检;PSP-Net具有更高的精确度,适用于渗漏水的精细化检测。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
方恩权
王耀东
李星言
马农杰
关键词:  隧道图像  深度学习  渗漏水图像  图像识别    
Abstract: Aiming at low accuracy of recognition in complex leakage images of subway tunnels, this paper studied the application of image recognition algorithms in tunnel water-leakage disease, was using two kinds of neural networks: U-Net and PSP-Net. Based on the subway tunnel images, tunnel leakage disease sample data set was constructed, where 5000 subway tunnel disease image data and 4000 labeled images were included. This data set could be used for deep neural convolution network training. U-Net and PSP-Net deep learning frameworks were established, and the neural networks were trained by self-made data set. The accuracy of the prediction results from U-Net and PSP-Net was evaluated, and the performance of the two networks in the application of leakage disease identification was compared. U-Net had stronger coverage for the disease and quick detection, while PSP-net had higher accuracy fit to fine detection.
Key words:  tunnel image    deep learning    leakage image    image recognition
收稿日期:  2021-10-28      修回日期:  2022-08-19      发布日期:  2022-12-20     
中图分类号:  TP391  
基金资助: 基金项目:国家自然科技基金资助项目(52020105002)
通讯作者:  王耀东(1982— ),男,河北石家庄人,博士,副教授,硕士生导师,主要研究方向为轨道交通智能检测.    E-mail:  ydwang@bjtu.edu.cn.
作者简介:  方恩权(1980— ),男,河南南阳人,博士,正高级工程师,主要研究方向为隧道工程. E-mail:fensar@163.com.
引用本文:    
方恩权, 王耀东, 李星言, 马农杰. 地铁盾构隧道渗漏水病害图像识别算法[J]. 隧道与地下工程灾害防治, 2022, 4(4): 28-33.
FANG Enquan, WANG Yaodong, LI Xingyan, MA Nongjie. Algorithms of leakage disease images recognition in subway tunnel. Hazard Control in Tunnelling and Underground Engineering, 2022, 4(4): 28-33.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2022/V4/I4/28
[1] 李翔宇,李新源,李明宇, 等.地铁盾构隧道渗漏水的产生原因及分布规律[J].建筑科学,2020,36(增刊1): 233-238. LI Xiangyu, LI Xinyuan, LI Mingyu, et al. The cause and distribution of water leakage in metro shield tunnel[J]. Building Science, 2020, 36(Suppl.1): 233-238.
[2] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[J].Communications of the ACM,2017, 60(6): 84-90.
[3] HUANG H W, LI Q T, ZHANG D M. Deep learning based image recognition for crack and leakage defects of metro shield tunnel[J]. Tunnelling and Underground Space Technology, 2018, 77: 166-176.
[4] 姚旭朋.地铁隧道渗漏水病害快速检测及图像处理技术[J]. 城市轨道交通研究, 2017, 20(12): 46-49. YAO Xupeng. Rapid inspection of water leakage defect in metro tunnel and image treatment technology[J]. Urban Mass Transit, 2017, 20(12): 46-49.
[5] 汤一平,胡克钢,袁公萍.基于全景图像CNN的隧道病害自动识别方法[J].计算机科学, 2017, 44(增刊2): 207-211. TANG Yiping, HU Kegang, YUAN Gongping. Automatic recognition method of tunnel disease based on convolutional neural network for panoramic images[J]. Computer Science, 2017, 44(Suppl.2): 207-211.
[6] KAKANTASIS K, PROTOPAPADAKIS E, DOULAMIS A, et al. Deep convolutional neural networks for efficient vision based tunnel inspection[C] //2015 IEEE International Conference on Intelligent Computer Communication and Processing. Cluj-Napoca, Romania:IEEE, 2015:335-342.
[7] RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C] //Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention. Munich, Germany:Springer Verlag, 2015:234-241.
[8] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. Computer Science, 2014:334-341.
[9] ZHAO H S, SHI J P, QI X J, et al. Pyramid scene parsing network[C] //Proceedings of the Conference on Computer Vision and Pattern Recognition. Honolulu, USA:Institute of Electrical and Electronics Engineers Incorporated, 2017: 6230-6239.
[10] SANDLER M, HOWARD A, ZHU M L, et al. MobileNetV2: inverted residuals and linear bottlenecks[C] //2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake City, USA:IEEE, 2018: 4510-4520.
[1] 徐琛,刘晓丽,张鲁军,毛宗原,周建军,王思敬. 耦合地质模型的TBM隧道施工过程进度仿真预测[J]. 隧道与地下工程灾害防治, 2020, 2(2): 41-46.
[1] QIAN Qihu. Scientific use of the urban underground space to construction the harmonious livable and beautiful city[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 1 -7 .
[2] DENG Mingjiang, LIU Bin. Challenges, countermeasures and development direction of geological forward-prospecting for TBM cluster tunneling in super-long tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 8 -19 .
[3] DING Xiuli, ZHANG Yuting, ZHANG Chuanjian, YAN Tianyou, HUANG Shuling. Review on countermeasures and their adaptability evaluation to tunnels crossing active faults[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 20 -35 .
[4] JIAO Yuyong, ZHANG Weishe, OU Guangzhao, ZOU Junpeng, CHEN Guanghui. Review of the evolution and mitigation of the water-inrush disaster in drilling-and-blasting excavated deep-buried tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 36 -46 .
[5] ZHANG Qingsong, ZHANG Lianzhen, LI Peng, FENG Xiao. New progress in grouting reinforcement theory of water-rich soft stratum in underground engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 47 -57 .
[6] XIA Kaiwen, XU Ying, CHEN Rong. Dynamic tests of rocks subjected to simulated deep underground environments[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 58 -75 .
[7] HONG Kairong. Study on rock breaking and wear of TBM hob in high-strength high-abrasion stratum[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 76 -85 .
[8] TAN Zhongsheng. Application experimental study of high-strength lattice girders with heat treatment in tunnel engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 86 -92 .
[9] CHEN Jianxun, LUO Yanbin. The stability of structure and its control technology for lager-span loess tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 93 -101 .
[10] JING Hongwen, YU Liyuan, SU Haijian, GU Jincai, YIN Qian. Development and application of catastrophic experiment system for water inrush in surrounding rock of deep tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 102 -110 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn