Please wait a minute...
 
隧道与地下工程灾害防治  2022, Vol. 4 Issue (4): 34-43    DOI: 10.19952/j.cnki.2096-5052.2022.04.05
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
盾构隧道围岩压力分布规律及作用模式
韩兴博1,陈子明1,苏恩杰1,梁晓明1,宋桂峰2,叶飞1*
1.长安大学公路学院, 陕西 西安710064;2.云南腊满高速公路有限公司, 云南 西双版纳 666300
The distribution law and action mode of surrounding rock pressure of shield tunnel
HAN Xingbo1, CHEN Ziming1, SU Enjie1, LIANG Xiaoming1, SONG Guifeng2, YE Fei1*
1. School of Highway Engineering, Chang'an University, Xi'an 710064, Shaanxi, China;
2. Yunnan Laman Expressway Co., Ltd., Xishuangbanna 666300, Yunnan, China
下载:  PDF (4385KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过对比23处盾构法隧道与44处新奥法隧道围岩压力的现场测试统计数据,研究盾构隧道围岩压力与埋深、洞径、地层类别之间的联系,分析盾构隧道围岩压力与新奥法隧道围岩压力之间的区别,进一步厘清盾构法隧道围岩压力的特性。通过计算分析,研究各围岩压力计算公式对盾构法隧道的适用性。分析发现:盾构隧道围岩压力随埋深增大的规律,且黄土与粉质黏土地层隧道的围岩压力明显小于含有砂性土的地层。随埋深及开挖洞径的增加,新奥法隧道的围岩压力呈现出较明显的增大趋势。盾构法与新奥法隧道围岩压力差异较大,盾构法衬砌支护更为及时,盾构隧道的围岩压力明显大于新奥法隧道,围岩压力沿洞周的分布更加均匀,盾构隧道的围岩压力更倾向属于形变压力。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
韩兴博
陈子明
苏恩杰
梁晓明
宋桂峰
叶飞
关键词:  隧道工程  盾构隧道  围岩压力  作用模式  现场测试统计    
Abstract: By comparing the field test statistics of the surrounding rock pressure of 23 shield tunnels and 44 NATM(new Austrian tunnelling method, NATM)tunnels, the relationship between the surrounding rock pressure of shield tunnels and the buried depth, tunnel diameter and stratum type was studied. The difference between the surrounding rock pressure of shield tunnels and the NATM tunnels was analyzed, and the characteristics of the surrounding rock pressure of shield tunnels were further clarified. The applicability of each surrounding rock pressure calculation formula to the shield tunnel was discussed through calculation and analysis. It was found that the surrounding rock pressure of the shield tunnel increased with the buried depth, and the surrounding rock pressure of tunnels in loess and silty clay stratum was obviously less than that in stratum containing sandy soil. The surrounding rock pressure of NATM tunnels showed an obvious increasing trend with the increase of buried depth and excavation hole diameter. The surrounding rock pressure of the shield tunnel and NATM tunnel was quite different. Due to the timelier lining support of the shield tunnel, the surrounding rock pressure of the shield tunnel was significantly higher than that of the NATM tunnel, and the distribution of surrounding rock pressure along the tunnel perimeter was more uniform. The surrounding rock pressure of the shield tunnel was more inclined to belong to deformation pressure.
Key words:  tunnel engineering    shield tunnel    surrounding rock pressure    mode of action    field test statistics
收稿日期:  2022-03-21      修回日期:  2022-04-25      发布日期:  2022-12-20     
中图分类号:  U451.4  
基金资助: 基金项目:国家自然科学基金青年资助项目(52108360)
通讯作者:  叶飞(1977— ),男,陕西石泉人,博士,教授,博士生导师,主要研究方向为隧道及地下结构安全.     E-mail:  xianyefei@126.com
作者简介:  韩兴博(1991— ),男,陕西岐山人,博士,讲师,主要研究方向为盾构隧道围岩-结构力学响应. E-mail: xingbo.han@chd.edu.cn.
引用本文:    
韩兴博, 陈子明, 苏恩杰, 梁晓明, 宋桂峰, 叶飞. 盾构隧道围岩压力分布规律及作用模式[J]. 隧道与地下工程灾害防治, 2022, 4(4): 34-43.
HAN Xingbo, CHEN Ziming, SU Enjie, LIANG Xiaoming, SONG Guifeng, YE Fei. The distribution law and action mode of surrounding rock pressure of shield tunnel. Hazard Control in Tunnelling and Underground Engineering, 2022, 4(4): 34-43.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2022/V4/I4/34
[1] 方正昌. 黄土洞室地层压力的统计分析[J]. 岩土工程学报, 1981, 3(1): 28-35. FANG Zhengchang. Statistical analysis of earth pressure on tunnel in loess[J]. Chinese Journal of Geotechnical Engineering, 1981, 3(1): 28-35.
[2] 王春浩. 超大断面黄土公路隧道围岩压力计算方法分析 [J]. 现代隧道技术, 2015, 52(3): 175-181. WANG Chunhao. Calculation method for surrounding rock pressure of a loess highway tunnel with an extra-large section[J]. Modern Tunnelling Technology, 2015, 52(3): 175-181.
[3] 王明年, 郭军, 罗禄森, 等. 高速铁路大断面深埋黄土隧道围岩压力计算方法[J]. 中国铁道科学, 2009, 30(5): 53-58. WANG Mingnian, GUO Jun, LUO Lusen, et al. Calculation method for the surrounding rock pressure of deep buried large sectional loess tunnel of high-speed railway[J]. China Railway Science, 2009, 30(5): 53-58.
[4] 李鹏飞,赵勇, 张顶立, 等. 基于现场实测数据统计的隧道围岩压力分布规律研究[J]. 岩石力学与工程学报, 2013, 32(7): 1392-1399. LI Pengfei, ZHAO Yong, ZHANG Dingli, et al. Study of distribution laws of tunnel surrounding rock pressure based on field measured data statistics[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(7): 1392-1399.
[5] 王志杰,王如磊,徐君祥, 等. 基于现场实测的深埋风积沙隧道围岩压力计算方法研究[J]. 隧道建设(中英文), 2019, 39(12): 1931-1939. WANG Zhijie, WANG Rulei, XU Junxiang, et al. Calculation method for surrounding rock pressure of deep aeolian sand tunnel based on field measurement[J]. Tunnel Construction, 2019, 39(12): 1931-1939.
[6] 周济民,何川,方勇, 等. 黄土地层盾构隧道受力监测与荷载作用模式的反演分析[J]. 岩土力学, 2011, 32(1): 165-171. ZHOU Jimin,HE Chuan,FANG Yong, et al. Mechanical property testing and back analysis of load models of metro shield tunnel lining in loess strata[J]. Rock and Soil Mechanics, 2011, 32(1): 165-171.
[7] YE F, YANG T, MAO J H, et al. Half-spherical surface diffusion model of shield tunnel back-fill grouting based on infiltration effect[J]. Tunnelling and Underground Space Technology, 2019, 83:274-281.
[8] 江英超,何川,方勇,等. 盾构施工对黄土地层的扰动及管片衬砌受荷特征[J]. 中南大学学报(自然科学版), 2013, 44(7): 2934-2941. JIANG Yingchao, HE Chuan, FANG Yong, et al. Soil disturbance caused by shield tunneling and segment lining loading characteristics in loess strata[J]. Journal of Central South University(Science and Technology), 2013, 44(7): 2934-2941.
[9] 段坚堤,傅鹤林,张敬宇, 等. 浅埋盾构隧道管片设计荷载的确定[J]. 铁道科学与工程学报, 2014, 11(2): 101-105. DUAN Jiandi,FU Helin, ZHANG Jingyu, et al. Determination of shallow load design of shield tunnel segment[J]. Journal of Railway Science and Engineering, 2014, 11(2): 101-105.
[10] 何川,张景,封坤. 盾构隧道结构计算分析方法研究 [J]. 中国公路学报, 2017, 30(8): 1-14. HE Chuan, ZHANG Jing, FENG Kun. Research on structural analysis method of shield tunnels[J]. China Journal of Highway and Transport, 2017, 30(8): 1-14.
[11] 梁庆国,房军,贺谱. 基于现场监测统计的隧道围岩压力特征分析[J]. 地下空间与工程学报, 2020, 16(2): 555-566. LIANG Qingguo, FANG Jun, HE Pu. Analysis on tunnel surrounding rock pressure characteristics based on field measured statistics[J]. Chinese Journal of Underground Space and Engineering, 2020, 16(2): 555-566.
[12] 伍冬. 山岭隧道围岩压力计算方法及其适用性研究[D].北京: 北京交通大学, 2012. WU Dong. Study on surrounding rock pressure calculation method and applicability of mountain tunnel[D]. Beijing:Beijing Jiaotong University, 2012.
[13] 于丽,吕城,段儒禹, 等. 浅埋黄土隧道围岩压力计算方法[J]. 中国铁道科学, 2019, 40(4): 69-76. YU Li, LÜ Cheng, DUAN Ruyu, et al. Calculation method for surrounding rock pressure of shallow buried loess tunnel[J]. China Railway Science, 2019, 40(4): 69-76.
[14] 洪开荣. 高速铁路水下盾构隧道结构力学特征及掘进与对接技术研究[D]. 北京: 北京交通大学, 2011. HONG Kairong. Study of the structural and mechanical performance of underwater shield-bored high speed railway tunnels and the boring and docking technologies[D]. Beijing:Beijing Jiaotong University, 2011.
[15] 周济民,何川,肖明清,等. 狮子洋水下盾构隧道衬砌结构受力的现场测试与计算分析[J]. 铁道学报, 2012, 34(7): 115-121. ZHOU Jimin, HE Chuan, XIAO Mingqing, et al. Field test and numerical simulation of mechanics of segment lining of Shiziyang Underwater Shield Tunnel[J]. Journal of the China Railway Society, 2012, 34(7): 115-121.
[16] 吴世明,王湛,王立忠. 大断面过江隧道运营期受力变形健康监测分析[J]. 浙江大学学报(工学版), 2013, 47(4): 595-601. WU Shiming, WANG Zhan, WANG Lizhong. Monitoring and analysis of force and deformation of large section crossing-river tunnel during operation period[J]. Journal of Zhejiang University(Engineering Science), 2013, 47(4): 595-601.
[17] 李建业. 新建隧道下穿既有大直径盾构隧道力学响应分析[D]. 北京: 北京交通大学, 2020. LI Jianye. Mechanical behaviors of existing large diameter shield tunnel due to new tunnels construction below[D]. Beijing: Beijing Jiaotong University, 2020.
[18] 邹志林. 海底取水盾构隧道双层衬砌结构受力特性研究 [D].长沙:中南大学, 2013. ZOU Zhilin. Study of mechanical characters of subsea water-intaken shield tunnel with double lining[D]. Changsha: Central South University, 2013.
[19] 肖中平,何川,林刚,等. 粘性地层地铁盾构隧道管片结构力学特征研究[J]. 现代隧道技术, 2006, 43(6): 18-22. XIAO Zhongping, HE Chuan, LIN Gang, et al. Study on the mechanical behavior of segmental structure of metro shield tunnels in viscous stratum[J]. Modern Tunnelling Technology, 2006, 43(6): 18-22.
[20] 何川,曾东洋. 砂性地层中地铁盾构隧道管片结构受力特征研究[J]. 岩土力学, 2007, 28(5): 909-914. HE Chuan, ZENG Dongyang. Research on mechanical characteristics of metro shield tunnel segment in sandy strata[J]. Rock and Soil Mechanics, 2007, 28(5): 909-914.
[21] 王俊, 方勇, 何川, 等. 盾构隧道施工对砂性地层的扰动及管片受荷特征[J]. 地下空间与工程学报, 2015, 11(1): 156-162. WANG Jun, FANG Yong, HE Chuan, et al. Disturbance of shield tunnel construction to sandy stratum and load bearing characteristics of segment lining[J]. Chinese Journal of Underground Space and Engineering, 2015, 11(1): 156-162.
[22] 钟小春. 盾构隧道管片土压力的研究[D].南京:河海大学, 2005. ZHONG Xiaochun. Research on earth pressure for shield tunnel lining[D]. Nanjing: Hohai University, 2005.
[23] 段俊萌. 盾构隧道联络通道施工管片力学响应研究[D]. 北京:北京交通大学, 2019. DUAN Junmeng.Research on the mechanical response of shield tunnel segment during the construction of cross passage[D]. Beijing: Beijing Jiaotong University, 2019.
[24] 张厚美,张良辉,马广州. 盾构隧道围岩压力的现场监测试验研究[J]. 隧道建设, 2006, 26(增刊2): 8-11. ZHANG Houmei, ZHANG Lianghui, MA Guangzhou. Experimental study on in-situ monitoring of ground pressures acting on shield-driven tunnels[J]. Tunnel Construction, 2006, 26(Suppl.2): 8-11.
[25] 唐孟雄, 陈如桂, 陈伟. 广州地铁盾构隧道施工中管片受力监测与分析[J]. 土木工程学报, 2009, 42(3): 118-124. TANG Mengxiong, CHEN Rugui, CHEN Wei. Stress monitoring and internal force analysis of Guangzhou metro shield tunnel segment during construction[J]. China Civil Engineering Journal, 2009, 42(3): 118-124.
[26] 陈建勋, 姜久纯, 罗彦斌, 等. 黄土隧道洞口段支护结构的力学特性分析[J]. 中国公路学报, 2008, 21(5): 75-80. CHEN Jianxun, JIANG Jiuchun, LUO Yanbin, et al. Mechanics characteristic analysis of support structure of loess tunnel entrance[J]. China Journal of Highway and Transport, 2008, 21(5): 75-80.
[27] 王晓星. 大跨度土质隧道施工监控量测及支护效果研究 [D].西安:长安大学, 2009. WANG Xiaoxing. Study on monitoring measurement and support result in large-span tunnel[D]. Xi'an: Chang'an University, 2009.
[28] 王新野. 浅埋大断面黄土隧道支护结构受力性状研究 [D].西安:长安大学, 2013. WANG Xinye. Research on the mechanic properties of support structure for large sectional loess tunnel under shallow[D]. Xi'an: Chang'an University, 2013.
[29] 王明年,郭军,罗禄森,等. 高速铁路大断面黄土隧道深浅埋分界深度研究[J]. 岩土力学, 2010, 31(4): 1157-1162. WANG Mingnian, GUO Jun, LUO Lusen, et al. Study of critical buried depth of large cross-section loess tunnel for high speed railway[J]. Rock and Soil Mechanics, 2010, 31(4): 1157-1162.
[30] 房倩. 高速铁路隧道支护与围岩作用关系研究[D]. 北京:北京交通大学, 2010. FANG Qian. Study on support-surrounding rock interaction for passenger dedicated lines tunnel[D].Beijing: Beijing Jiaotong University, 2010.
[31] 林君武,罗阳青. 九嶷山一号隧道施工监控量测及分析 [J]. 湖南交通科技, 2010, 36(3): 98-100. LIN Junwu, LUO Yangqing. Measurement and analysis of Jiuyi Mountain No.1 Tunnel construction monitoring[J]. Hunan Communication Science and Technology, 2010, 36(3): 98-100.
[32] 韩桂武,刘斌,范鹤. 浅埋黄土隧道衬砌结构受力分析 [J]. 岩石力学与工程学报, 2007, 26(增刊1): 3250-3256. HAN Guiwu, LIU Bin, FAN He. Mechanical characteristics of tunnel lining structure in shallow-buried loess area[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(Suppl.1): 3250-3256.
[33] 赖金星. 高海拔复杂围岩公路隧道温度场特征与结构性能研究[D]. 西安:长安大学, 2008. LAI Jinxing. Study on temperature field feature and structure characteristics of high altitude localities road tunnel with complex surrounding rock[D]. Xi'an: Chang'an University, 2008.
[34] 张庆松,李术才,李利平. 分岔隧道大拱段围岩稳定性监控与爆破振动效应分析[J]. 岩石力学与工程学报, 2008, 27(7): 1462-1468. ZHANG Qingsong, LI Shucai, LI Liping. Study of blasting dynamic effect and site monitoring of large-span shallow part of bifurcated tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(7): 1462-1468.
[35] 来弘鹏. 黄土公路隧道合理衬砌断面型式试验研究[D].西安:长安大学, 2004. LAI Hongpeng. Experimental study on reasonable lining section type of loess highway tunnel[D]. Xi'an: Chang'an University, 2004.
[36] 王英学,周佳媚,高波. 偏压滑坡地段围岩受力特征测试分析[J]. 岩土力学, 2002, 23(6): 792-794. WANG Yingxue, ZHOU Jiamei, GAO Bo. Measurement and analysis of stress conditions of tunnel's surrounding rock masses at deviation pressured landslide section[J]. Rock and Soil Mechanics, 2002, 23(6): 792-794.
[37] 曹宁全. 软弱黄土公路隧道支护体系受力特征分析[D].西安: 长安大学, 2010. CAO Ningquan. Soft loess highway tunnel supporting system characteristics analysis[D]. Xi'an: Chang'an University, 2010.
[38] 赵占厂, 谢永利, 杨晓华, 等. 黄土公路隧道衬砌受力特性测试研究[J]. 中国公路学报, 2004, 17(1): 66-69. ZHAO Zhanchang, XIE Yongli, YANG Xiaohua, et al. Observation research on the mechanical characteristic of highway tunnel lining in loess[J]. China Journal of Highway and Transport, 2004, 17(1): 66-69.
[39] 张国华, 陈礼彪, 钱师雄, 等. 大断面小净距大帽山隧道现场监控量测及分析[J]. 岩土力学, 2010, 31(2): 489-496. ZHANG Guohua, CHEN Libiao, QIAN Shixiong, et al. On-site supervision measure and analysis of Damaoshan Tunnels with large section and small clear-distance[J]. Rock and Soil Mechanics, 2010, 31(2): 489-496.
[40] 董云松. 不同侧压比下隧道初期支护的稳定性研究[J]. 铁道标准设计, 2010,54(6): 87-90. DONG Yunsong. Study of the stability of tunnel early supporting under different lateral pressures ratios[J].Railway Standard Design, 2010, 54(6): 87-90.
[41] 蒋树屏, 赵阳. 复杂地质条件下公路隧道围岩监控量测与非确定性反分析研究[J]. 岩石力学与工程学报, 2004, 23(20):3460-3464. JIANG Shuping, ZHAO Yang. Study on monitoring and back analysis for road tunnel with complex geology[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(20): 3460-3464.
[42] 曾义. 斑竹林隧道新奥法施工监控量测与分析研究[D].重庆:重庆交通大学, 2008. ZENG Yi. Analysis and research of the NATM construction monitoring for Banzhulin Tunnel[D]. Chongqing: Chongqing Jiaotong University, 2008.
[43] 王震. 正阳隧道围岩变形与支护结构受力特性研究[D].重庆: 重庆交通大学, 2009. WANG Zhen. Study on the surrounding rock deformation and mechanical character of support structure for Zhengyang Tunnel[D]. Chongqing:Chongqing Jiaotong University, 2009.
[44] 李春林. 都汶公路龙溪隧道支护结构力学行为研究[D]. 成都:成都理工大学, 2008. LI Chunlin. Research on the mechanical behaviors of the support structures of Longxi Tunnel[D]. Chengdu: Chengdu University of Technology, 2008.
[45] 王勇, 王志杰, 张洋. 监控量测在隧道衬砌结构数值模拟中的应用[J]. 路基工程, 2009(3): 149-151. WANG Yong, WANG Zhijie, ZHANG Yang. Application of monitoring measurement in numerical simulation of tunnel lining structure[J]. Subgrade Engineering, 2009(3): 149-151.
[46] 杨善胜. 软弱围岩隧道合理支护型式研究[D] 西安:长安大学, 2008. YANG Shansheng. Study on reasonable support types for tunnels in soft surrounding rock[D]. Xi'an: Chang'an University, 2008.
[47] 闫立来. 岩质隧道围岩应力释放率的确定与结构力学性状研究[D].西安:长安大学, 2009. YAN Lilai. The determination of release rate of the surrounding rock and study on the mechanical property of the tunnel structure[D]. Xi'an: Chang'an University, 2009.
[48] 周超. 三车道公路隧道信息化施工技术研究[D].成都: 西南交通大学, 2010. ZHOU Chao. A technical study of informational construction on three-lane highway tunnel[D]. Chengdu: Southwest Jiaotong University, 2010.
[49] 鹿江. 复杂地质条件下公路隧道受力性状分析及结构可靠性评价[D].西安:长安大学, 2010. LU Jiang. Tunnel structural analysis of property and reliability assessment under complex geological conditions[D]. Xi'an: Chang'an University, 2010.
[50] 李鹏飞, 田四明, 赵勇, 等. 高地应力软弱围岩隧道初期支护受力特性的现场监测研究[J]. 岩石力学与工程学报, 2013, 32(增刊2): 3509-3519. LI Pengfei, TIAN Siming, ZHAO Yong, et al. In-situ monitoring study of mechanical characteristics of primary lining in weak rock tunnel with high grostress[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(Suppl.2): 3509-3519.
[51] 陈建勋,杨忠,袁雪戡. 秦岭终南山特长公路隧道大埋深段施工监测及分析[J]. 建筑科学与工程学报, 2006, 23(3): 71-75. CHEN Jianxun, YANG Zhong, YUAN Xuekan. Construction monitoring and measuring in segments of large embedded depth in Qinling Zhongnanshan Super-long Highway Tunnel[J]. Journal of Architecture and Civil Engineering, 2006, 23(3): 71-75.
[52] 汪波,何川,吴德兴. 隧道结构健康监测系统理念及其技术应用[J]. 铁道工程学报, 2012, 29(1): 67-72. WANG Bo, HE Chuan, WU Dexing. Ideas of tunnel structure health monitoring system and its technology application[J]. Journal of Railway Engineering Society, 2012, 29(1):67-72.
[1] 魏纲, 徐天宝, 张治国. 复杂应力路径下波纹钢加固盾构隧道数值分析[J]. 隧道与地下工程灾害防治, 2023, 5(2): 24-32.
[2] 王智, 刘祥勇, 朱先发, 洪小星, 沈一鸣, 张冰利. 小曲率半径隧道施工对盾构管片结构影响[J]. 隧道与地下工程灾害防治, 2023, 5(1): 45-54.
[3] 喻伟,林赞权,朱彬彬,汪元冶,丁文其,乔亚飞,张晓东,龚琛杰. 盾构隧道防水密封垫材料的高温老化后性能[J]. 隧道与地下工程灾害防治, 2022, 4(4): 52-58.
[4] 赵辰洋, 罗毛毛, 邱静怡, 倪芃芃, 赵锋烽. 盾构隧道施工引起地层变形预测方法综述[J]. 隧道与地下工程灾害防治, 2022, 4(3): 31-46.
[5] 丁智, 李鑫家, 张霄. 基于机器学习的盾构掘进地表变形预测研究与展望[J]. 隧道与地下工程灾害防治, 2022, 4(3): 1-9.
[6] 吕玺琳, 赵庾成, 曾盛. 砂层中盾构隧道开挖面稳定性物理模型试验[J]. 隧道与地下工程灾害防治, 2022, 4(3): 67-76.
[7] 潘秋景, 李晓宙, 黄杉, 汪来, 王树英, 方国光. 机器学习在盾构隧道智能施工中的应用——综述与展望[J]. 隧道与地下工程灾害防治, 2022, 4(3): 10-30.
[8] 张治国, 程志翔, 陈杰, 吴钟腾, 李云正. 盾构隧道接缝渗漏水诱发既有管线变形模型试验[J]. 隧道与地下工程灾害防治, 2022, 4(3): 77-91.
[9] 刘祥勇, 张鑫, 王军, 赵涛宁, 朱先发. 盾构施工对邻近建筑物群结构影响评价[J]. 隧道与地下工程灾害防治, 2022, 4(3): 99-106.
[10] 许有俊, 王智广, 张旭, 郭飞, 高胜雷, 杨昆. 小转弯半径盾构隧道施工引起的地层变形特征[J]. 隧道与地下工程灾害防治, 2022, 4(2): 11-18.
[11] 陈峰军, 宗军良, 王祺, 禹海涛. 地面出入式超浅埋盾构隧道静力响应模型试验[J]. 隧道与地下工程灾害防治, 2022, 4(2): 66-72.
[12] 黄昕, 谷冠思, 张子新, 李昀. 考虑渗流的泥水平衡盾构隧道稳定性数值模拟[J]. 隧道与地下工程灾害防治, 2022, 4(2): 28-38.
[13] 马少俊, 李鑫家, 王乔坎, 丁智. 某深基坑开挖对邻近既有盾构隧道影响实测分析[J]. 隧道与地下工程灾害防治, 2022, 4(1): 86-94.
[14] 房倩, 杜建明, 王赶, 杨晓旭. 模型边界对圆形隧道开挖引起地表沉降的影响分析[J]. 隧道与地下工程灾害防治, 2022, 4(1): 10-17.
[15] 张姣龙,高一民,张建,周浩,潘野,柯磊, 柳献. 一种模拟盾构刀盘破岩过程的模型试验设计原理和方法[J]. 隧道与地下工程灾害防治, 2021, 3(4): 20-28.
[1] QIAN Qihu. Scientific use of the urban underground space to construction the harmonious livable and beautiful city[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 1 -7 .
[2] DENG Mingjiang, LIU Bin. Challenges, countermeasures and development direction of geological forward-prospecting for TBM cluster tunneling in super-long tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 8 -19 .
[3] DING Xiuli, ZHANG Yuting, ZHANG Chuanjian, YAN Tianyou, HUANG Shuling. Review on countermeasures and their adaptability evaluation to tunnels crossing active faults[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 20 -35 .
[4] JIAO Yuyong, ZHANG Weishe, OU Guangzhao, ZOU Junpeng, CHEN Guanghui. Review of the evolution and mitigation of the water-inrush disaster in drilling-and-blasting excavated deep-buried tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 36 -46 .
[5] ZHANG Qingsong, ZHANG Lianzhen, LI Peng, FENG Xiao. New progress in grouting reinforcement theory of water-rich soft stratum in underground engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 47 -57 .
[6] XIA Kaiwen, XU Ying, CHEN Rong. Dynamic tests of rocks subjected to simulated deep underground environments[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 58 -75 .
[7] HONG Kairong. Study on rock breaking and wear of TBM hob in high-strength high-abrasion stratum[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 76 -85 .
[8] TAN Zhongsheng. Application experimental study of high-strength lattice girders with heat treatment in tunnel engineering[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 86 -92 .
[9] CHEN Jianxun, LUO Yanbin. The stability of structure and its control technology for lager-span loess tunnel[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 93 -101 .
[10] JING Hongwen, YU Liyuan, SU Haijian, GU Jincai, YIN Qian. Development and application of catastrophic experiment system for water inrush in surrounding rock of deep tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 102 -110 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn