Please wait a minute...
 
隧道与地下工程灾害防治  2024, Vol. 6 Issue (3): 73-81    DOI: 10.19952/j.cnki.2096-5052.2024.03.08
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
基于皮带出渣图像识别渣土含水率区间
苏国君1,龚秋明1*,周小雄2,吴伟锋3,陈培新3
1. 北京工业大学城市防灾与减灾教育部重点实验室, 北京 100124;2. 重庆交通大学土木工程学院, 重庆 400074;3. 上海隧道工程有限公司, 上海 200032
Identifying the water content interval of muck based on the image of belt slag
SU Guojun1, GONG Qiuming1*, ZHOU Xiaoxiong2, WU Weifeng3, CHEN Peixin3
1. Key Laboratory of Urban Security and Disaster Engineering of China Ministry of Education, Beijing University of Technology, Beijing 100124, China;
2. School of Civil Engineering, Chongqing Jiaotong University, Chongqing 400074, China;
3. Shanghai Tunnel Engineering Co., Ltd., Shanghai 200032, China
下载:  PDF (13310KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 为实时识别渣土含水率,通过制备3种初始含水率细砂,添加不同泡沫注入比的泡沫制成不同含水率的改良渣土,通过皮带出渣试验平台开展出渣试验,获取皮带上渣土图像,并采集渣土样测定其含水率,以1%为间隔标记含水率区间,建立渣土图像与含水率区间数据集。通过图像预处理,采用简化局部像素强度模式结合完备局部二值模式的方法提取渣土主体图像与边缘图像纹理特征,选取粒子群优化的支持向量机模型作为基模型,进一步构建渣土含水率识别集成学习模型,提高了识别准确率,含水率识别误差为±1%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
苏国君
龚秋明
周小雄
吴伟锋
陈培新
关键词:  皮带出渣试验  渣土图像  含水率识别  机器学习  图像纹理    
Abstract: In order to identify the soil water content in real time, the improved muck with three kinds of fine sand with initial water content were prepared by adding foam with different foam injection ratios, the slag experiment was carried out through the belt slag test platform, the muck images on the belt were obtained, the muck samples were collected accordingly to determine the water content, the water content interval was marked at 1% intervals, and the data set of muck images and water content intervals was established. Through image preprocessing, the texture features of the main image and the edge image of the muck were extracted by using the method of simplified local intensity order pattern combined with completed local binary pattern, and the support vector machine model of particle swarm optimization was selected as the base model, and the integrated learning model for the recognition of water content of the muck was further constructed, which improved the recognition accuracy, and the recognition error of the water content was ±1%.
Key words:  belt slag experiment    muck image    identification of water content    machine learning    image textureReceived: 2024-04-11    Revised: 2024-05-16    Accepted: 2024-05-24    Published: 2024-09-20
发布日期:  2024-09-20     
中图分类号:  TU94  
  U455.4  
作者简介:  苏国君(1999— ),男,辽宁沈阳人,硕士研究生,主要研究方向为盾构机隧道施工智能化. E-mail: 13940387321@163.com. *通信作者简介:龚秋明(1969— ),男,湖南安化人,教授,博士生导师,博士,主要研究方向为掘进机、盾构机隧道施工. E-mail:gongqiuming@bjut.edu.cn
引用本文:    
苏国君,龚秋明,周小雄,吴伟锋,陈培新. 基于皮带出渣图像识别渣土含水率区间[J]. 隧道与地下工程灾害防治, 2024, 6(3): 73-81.
SU Guojun, GONG Qiuming, ZHOU Xiaoxiong, WU Weifeng, CHEN Peixin. Identifying the water content interval of muck based on the image of belt slag. Hazard Control in Tunnelling and Underground Engineering, 2024, 6(3): 73-81.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2024/V6/I3/73
[1] 龚秋明. 掘进机隧道掘进概论[M].北京: 科学出版社, 2014: 22-24.
[2] 闫鑫, 龚秋明, 姜厚停. 土压平衡盾构施工中泡沫改良砂土的试验研究[J]. 地下空间与工程学报, 2010, 6(3): 449-453. YAN Xin, GONG Qiuming, JIANG Houting. Soil conditioning for earth-pressure balanced shields excavation in sand layers[J]. Chinese Journal of Underground Space and Engineering, 2010, 6(3): 449-453.
[3] 王树英, 刘朋飞, 胡钦鑫, 等. 盾构隧道渣土改良理论与技术研究综述[J]. 中国公路学报, 2020, 33(5): 8-34. WANG Shuying, LIU Pengfei, HU Qinxin, et al. State-of-the-art on theories and technologies of soil conditioning for shield tunneling[J]. China Journal of Highway and Transport, 2020, 33(5): 8-34.
[4] 肖超,谭立新,夏一夫,等.基于渣土改良的土压平衡盾构掘进参数特征研究[J].铁道科学与工程学报,2017,14(11):2418-2426. XIAO Chao, TAN Lixin, XIA Yifu, et al. Excavation parameters characteristics of earth pressure balanced shield based on soil modification[J]. Journal of Railway Science and Engineering, 2017, 14(11): 2418-2426.
[5] 姜厚停. 土压平衡盾构施工土体改良试验研究[D]. 北京: 北京工业大学, 2014. JIANG Houting. Experimental study on soil improvement in EPB shield construction[D].Beijing: Beijing University of Technology, 2014.
[6] 杨洪希, 黄伟, 王树英, 等. 粉质黏土地层土压平衡盾构渣土改良技术[J]. 隧道与地下工程灾害防治, 2020, 2(2):76-82. YANG Hongxi, HUANG Wei, WANG Shuying, et al. Soil conditioning technique of EPB shield in silty clay stratum[J]. Hazard Control in Tunnelling and Underground Engineering, 2020, 2(2): 76-82.
[7] 李琛, 骆汉宾, 刘文黎, 等. 基于改进Faster R-CNN法的盾构渣土流塑性自动识别研究[J].隧道建设(中英文),2022,42(2):268-274. LI Chen, LUO Hanbin, LIU Wenli, et al. Automatic recognition of flow plasticity of conditioned soil based on improved faster R-CNN[J]. Tunnel Construction, 2022, 42(2): 268-274.
[8] ZHANG D M, FU L, HUANG H W, et al. Deep learning-based automatic detection of muck types for earth pressure balance shield tunneling in soft ground[J]. Computer-Aided Civil and Infrastructure Engineering, 2023, 38(7): 940-955.
[9] GONG Q M, ZHOU X X, LIU Y Q, et al. Development of a real-time muck analysis system for assistant intelligence TBM tunnelling[J]. Tunnelling and Underground Space Technology, 2021, 107: 103655.
[10] ZHOU X X, GONG Q M, LIU Y Q, et al. Automatic segmentation of TBM muck images via a deep-learning approach to estimate the size and shape of rock chips[J]. Automation in Construction, 2021, 126: 103685.
[11] 中华人民共和国住房和城乡建设部. 土工试验方法标准: GB/T 50123—2019[S]. 北京: 中国计划出版社, 2019.
[12] SÁNCHEZ-MARAÑÓN M, ORTEGA R, MIRALLES I, et al. Estimating the mass wetness of Spanish arid soils from lightness measurements[J]. Geoderma, 2007, 141(3/4): 397-406.
[13] 赵青松, 刘观仕, 莫燕坤, 等. 基于RGB颜色信息的风积沙含水率测试[J]. 实验室研究与探索, 2021, 40(5): 22-26. ZHAO Qingsong, LIU Guanshi, MO Yankun, et al. Measurement of water content of aeolian sand based on RGB color information[J]. Research and Exploration in Laboratory, 2021, 40(5): 22-26.
[14] 刘玉珍, 周天飞, 林森. 基于局部纹理特征检测的水下光学图像复原算法[J]. 华中科技大学学报(自然科学版), 2023, 51(9): 103-109. LIU Yuzhen, ZHOU Tianfei, LIN Sen. Underwater optical image restoration algorithm based on local texture feature detection[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2023, 51(9): 103-109.
[15] OJALA T, PIETIKAINEN M, MAENPAA T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7): 971-987.
[16] GUO Z H, ZHANG L, ZHANG D. A completed modeling of local binary pattern operator for texture classification[J]. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society, 2010, 19(6): 1657-1663.
[17] 李君伟, 刘光帅, 刘望华, 等. 多模式共生的彩色纹理图像分类方法[J]. 计算机应用研究, 2020, 37(7): 2185-2188. LI Junwei, LIU Guangshuai, LIU Wanghua, et al. Texture classification method based on co-occurrence of multi-pattern[J]. Application Research of Computers, 2020, 37(7): 2185-2188.
[18] 龚秋明, 姜厚停, 周永攀. 一种土压平衡盾构施工土体改良试验用泡沫发生装置: CN102198378A[P]. 2011-09-28.
[19] 龚秋明,周小雄,朱伟,等.TBM隧道施工的智能化控制方法及系统: CN107201903A [P]. 2017-09-26.
[20] CORTES C, VAPNIK V. Support-vector networks[J]. Machine Learning, 1995, 20(3): 273-297.
[21] KENNEDY J, EBERHART R. Particle swarm optimization[C] //Proceedings of ICNN'95-International Conference on Neural Networks. Perth, Australia: IEEE, 1995: 1942-1948.
[1] 禹海涛, 朱晨阳. 基于BP神经网络的圆形隧道地震响应预测方法及参数分析[J]. 隧道与地下工程灾害防治, 2023, 5(3): 19-26.
[2] 丁智, 李鑫家, 张霄. 基于机器学习的盾构掘进地表变形预测研究与展望[J]. 隧道与地下工程灾害防治, 2022, 4(3): 1-9.
[3] 潘秋景, 李晓宙, 黄杉, 汪来, 王树英, 方国光. 机器学习在盾构隧道智能施工中的应用——综述与展望[J]. 隧道与地下工程灾害防治, 2022, 4(3): 10-30.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn