Please wait a minute...
 
隧道与地下工程灾害防治  2024, Vol. 6 Issue (3): 82-91    DOI: 10.19952/j.cnki.2096-5052.2024.03.09
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
装配式隧道接头冲击动力响应特性
周雨竹1,彭子茂2*,全珈颖1,秦茂豇1,黄震1
1. 广西大学土木建筑工程学院, 广西 南宁 530004;2. 湖南交通职业技术学院建筑工程学院, 湖南 长沙 410132
Impact dynamic response characteristics of assembled tunnel joints
ZHOU Yuzhu1, PENG Zimao2*, QUAN Jiaying1, QIN Maojiang1, HUANG Zhen1
1. School of Civil Engineering and Architecture, Guangxi University, Nanning 530004, Guangxi, China;
2. Architectural Engineering Institute, Hunan Communication Polytechnic, Changsha 410132, Hunan, China
下载:  PDF (10685KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 为探究3种装配式隧道接头(自重榫卯接头、螺栓榫卯接头、钢板榫卯接头)在冲击荷载作用下的动力响应特性,采用ABAQUS软件模拟3种接头在冲击荷载作用下的动力响应过程与损伤破坏特征,对比3种接头抗冲击性能。研究结果表明:装配式隧道接头在冲击作用下的响应可分为初始冲击阶段、发展阶段和稳定阶段,在此过程中接头受到冲击力、支反力及惯性力的共同作用;3种接头冲击动力响应特征受冲击质量及速度影响,当冲击质量超过1 400 kg且冲击速度超过60 km/h时,接头中心位移、张开量及损伤范围均会显著增加;钢板榫卯接头是3种接头结构中抗冲击性能最优的一种结构形式;在设计装配式隧道结构抗冲击时,需重点加强接头刚度。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周雨竹
彭子茂
全珈颖
秦茂豇
黄震
关键词:  装配式隧道  接头  冲击荷载  动力响应  数值模型    
Abstract: To explore the dynamic response characteristics of three kinds of assembled tunnel joints(self-weight mortise-tenon joint, bolt mortise-tenon joint and steel plate mortise-tenon joint)under impact load, ABAQUS software was utilized to simulate the dynamic response process and damage characteristics of three kinds of joints under impact load, and the impact resistance of three kinds of joints was compared. The results indicated that the response of the assembled tunnel joint under impact could be divided into initial impact stage, development stage and stable stage. In this process, the joint was affected by impact force, reaction force and inertia force. The dynamic response characteristics of the three types of joints were influenced by the mass and velocity of the impact. When the impact mass exceeds 1 400 kg and the impact velocity exceeds 60 km/h, the central displacement, opening, and damage range of the joints significantly increased. The steel plate tenon and mortise joint was the structure with the best impact resistance among the three types of joints. In the anti-impact design of assembled tunnel structures, it was necessary to focus on enhancing the stiffness of the joints.
Key words:  assembled tunnel    joint    impact load    dynamic response    numerical simulationReceived: 2024-05-06    Revised: 2024-06-05    Accepted: 2024-06-14    Published: 2024-09-20
发布日期:  2024-09-20     
中图分类号:  U45  
基金资助: 湖南省自然科学基金资助项目(2022JJ60055);广西科技基地和人才专项基金资助项目(桂科AD21220039)
作者简介:  周雨竹(2000— ),女,广西百色人,硕士研究生,主要研究方向为装配式隧道防灾性能研究. E-mail:gxdxzyz77@163.com. *通信作者简介:彭子茂(1982— ),男,湖南长沙人,教授,硕士生导师,硕士,主要研究方向为装配式建筑结构设计及性能研究. E-mail:pengzimao82@163.com
引用本文:    
周雨竹, 彭子茂, 全珈颖, 秦茂豇, 黄震. 装配式隧道接头冲击动力响应特性[J]. 隧道与地下工程灾害防治, 2024, 6(3): 82-91.
ZHOU Yuzhu, PENG Zimao, QUAN Jiaying, QIN Maojiang, HUANG Zhen. Impact dynamic response characteristics of assembled tunnel joints. Hazard Control in Tunnelling and Underground Engineering, 2024, 6(3): 82-91.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2024/V6/I3/82
[1] HUANG Z, QIN M J, ZHANG C L, et al. Structural dynamic response of a frame tunnel under coupled impact-explosion loading[J]. KSCE Journal of Civil Engineering, 2023, 27(12): 5417-5435.
[2] HUANG Z, BAI H W, ZHANG C L, et al. Mechanical behavior and damage evolution of a fabricated rectangular tunnel with a mortise-and-tenon joint under internal explosion[J]. Journal of Performance of Constructed Facilities, 2023, 37(1): 04022071.
[3] 张震, 姚颖康, 贾永胜, 等. 冲击荷载作用下地铁隧道盾构管片破坏特性[J]. 地下空间与工程学报, 2024, 20(2): 488-496. ZHANG Zhen, YAO Yingkang, JIA Yongsheng, et al.Damage characteristics of the shield segment of the subway tunnelunder impact loading[J]. Journal of Underground Space and Engineering, 2024, 20(2): 488-496.
[4] 闫秋实, 邵慧芳, 李亮. 冲击荷载作用下装配式钢筋混凝土梁力学性能研究[J]. 工程力学, 2017, 34(4):196-205. YAN Qiushi, SHAO Huifang, LI Liang. Study on the behavior of precast reinforced concrete beams under impact loading[J]. Engineering Mechanics, 2017, 34(4): 196-205.
[5] JIN L, YANG J, ZHANG R B, et al. Modeling of GFRP-reinforced concrete slabs under various impact masses and velocities[J]. Thin-Walled Structures, 2023, 182: 110175.
[6] 晏启祥, 李彬嘉, 陈行, 等. 撞击荷载作用下盾构隧道接头螺栓失效及参数分析[J]. 西南交通大学学报, 2019, 54(1): 23-31. YAN Qixiang, LI Binjia, CHEN Hang, et al. Failure and parametric analysis of shield tunnel bolts under impact load[J]. Journal of Southwest Jiaotong University, 2019, 54(1): 23-31.
[7] WANG Z Y, HOU C C, GUO Q Q. Numerical simulation on the dynamic response of bonded unidirectional prestressed concrete slabs subjected to low-velocity impact[J]. Structures, 2022, 38: 1098-1110.
[8] 李其廉, 张媛媛, 潘政华, 等. SRC柱和CFST柱在车辆撞击下的动力响应分析[J]. 河北工业科技, 2023, 40(3): 192-201. LI Qilian, ZHANG Yuanyuan, PAN Zhenghua, et al. Dynamic response analysis of SRC and CFST square columns under vehicle impact[J]. Hebei Journal of Industrial Science and Technology, 2023, 40(3): 192-201.
[9] 宋敏, 王志勇, 张杰, 等. 冲击荷载下钢筋混凝土缺口梁破坏模式的试验研究[J]. 振动与冲击, 2022, 41(13): 126-134. SONG Min, WANG Zhiyong, ZHANG Jie, et al. Tests for failure mode of RC notched beam under impact load[J]. Journal of Vibration and Shock, 2022, 41(13): 126-134.
[10] 汪俊文, 周德源. 钢筋混凝土柱抗水平冲击行为数值研究[J]. 结构工程师, 2019, 35(1): 42-48. WANG Junwen, ZHOU Deyuan. Numerical investigation on resistant behavior of reinforced concrete columns under horizontal impact loading[J]. Structural Engineers, 2019, 35(1): 42-48.
[11] 付应乾, 董新龙. 落锤冲击下钢筋混凝土梁响应及破坏的实验研究[J]. 中国科学(技术科学), 2016, 46(4): 400-406. FU Yingqian, DONG Xinlong. An experimental study on impact response and failure behavior of reinforced concrete beam[J]. Scientia Sinica(Technologica), 2016, 46(4): 400-406.
[12] 安国青, 王蕊, 赵晖, 等. 双钢板混凝土组合板在撞击荷载下的动力响应[J]. 东北大学学报(自然科学版), 2022, 43(8): 1192-1200. AN Guoqing, WANG Rui, ZHAO Hui, et al. Dynamic response of double-skin steel-concrete composite panel under impact loading[J]. Journal of Northeastern University(Natural Science), 2022, 43(8): 1192-1200.
[13] 中华人民共和国住房和城乡建设部. 混凝土结构设计规范: GB 50010—2010[S]. 北京: 中国建筑工业出版社, 2011.
[14] HANG NGUYEN T N, TAN K H, KANDA T. Investigations on web-shear behavior of deep precast, prestressed concrete hollow core slabs[J]. Engineering Structures, 2019, 183: 579-593.
[15] FERREIRA F P V, MARTINS C H, DE NARDIN S. A parametric study of steel-concrete composite beams with hollow core slabs and concrete topping[J]. Structures, 2020, 28: 276-296.
[16] GENIKOMSOU A S, POLAK M A. Finite element analysis of punching shear of concrete slabs using damaged plasticity model in ABAQUS[J]. Engineering Structures, 2015, 98: 38-48.
[17] HUANG Z, ZHANG C L, MA S K, et al. Study of the mechanical behaviour and damage characteristics of three new types of joints for fabricated rectangular tunnels using a numerical approach[J]. Tunnelling and Underground Space Technology, 2021, 118: 104184.
[18] 黄震, 白海文, 马少坤, 等. 装配式隧道圆形和方形钢榫接头抗弯性能大尺寸试验[J]. 中国公路学报, 2022, 35(8): 233-244. HUANG Zhen, BAI Haiwen, MA Shaokun, et al. Large-scale testing of bending behavior of circular and square steel tenon joints of fabricated tunnel[J]. China Journal of Highway and Transport, 2022, 35(8): 233-244.
[19] JIANG J C, BAKER R, YAMAGAMI T. The effect of strength envelope nonlinearity on slope stability computations[J]. Canadian Geotechnical Journal, 2003, 40(2): 308-325.
[20] LUCCIONI B, AMBROSINI D, NURICK G, et al. Craters produced by underground explosions[J]. Computers & Structures, 2009, 87(21/22): 1366-1373.
[21] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 汽车、挂车及汽车列车外廓尺寸、轴荷及质量限值: GB 1589—2016[S].北京: 中国标准出版社, 2016.
[22] ZHAO D B, YI W J, KUNNATH S K. Numerical simulation and shear resistance of reinforced concrete beams under impact[J]. Engineering Structures, 2018, 166: 387-401.
[1] 黄震,叶张骞,张嘉伟,彭子茂,严展硕. 膨胀型防火涂料对装配式框架隧道耐火性影响[J]. 隧道与地下工程灾害防治, 2024, 6(2): 46-58.
[1] QIAN Qihu. Scientific use of the urban underground space to construction the harmonious livable and beautiful city[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 1 -7 .
[2] ZHOU Caigui, LI Jing, LIANG Qingguo, CHEN Kelin. Comparison of water inflow prediction methods of hydraulic diversion tunnels during construction[J]. Hazard Control in Tunnelling and Underground Engineering, 2023, 5(1): 32 -44 .
[3] . [J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(2): 124 -127 .
[4] DONG Longjun, WANG Junhui, MA Ju. Response and support suggestions of surrounding rock of underground cavern under different microseismic source mechanism[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(3): 68 -76 .
[5] ZHAO Zhihong, GUO Tiecheng, LIN Tao, CHEN Sicong. Characteristics of excavation damaged zone in fractured rock mass[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(3): 77 -86 .
[6] YU Haisui, ZHUANG Peizhi. Cavity contraction theory and its application to tunnelling[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(4): 13 -32 .
[7] LIU Run, HUANG Xuanzhi, YUAN Yu, MA Pengcheng. Study of soil degradation effects on offshore wind turbine with large-diameter pile foundation[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(4): 56 -63 .
[8] CHEN Xiangsheng, XU Zhihao, BAO Xiaohua, CUI Hongzhi. Overview of research on tunnel defects monitoring and detection technology[J]. Hazard Control in Tunnelling and Underground Engineering, 2020, 2(3): 1 -12 .
[9] CAI Zunle, LIANG Qingguo, CAO Shenghui, LI Qidi, WU Xiaohui, ZHOU Ren. The deformation pattern of soft rock tunnels with high ground stress[J]. Hazard Control in Tunnelling and Underground Engineering, 2023, 5(4): 21 -32 .
[10] DENG Mingjiang, LIU Bin. Challenges, countermeasures and development direction of geological forward-prospecting for TBM cluster tunneling in super-long tunnels[J]. Hazard Control in Tunnelling and Underground Engineering, 2019, 1(1): 8 -19 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn