Please wait a minute...
 
隧道与地下工程灾害防治  2024, Vol. 6 Issue (2): 46-58    DOI: 10.19952/j.cnki.2096-5052.2024.02.05
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
膨胀型防火涂料对装配式框架隧道耐火性影响
黄震1,2,叶张骞1,张嘉伟1,彭子茂3,严展硕1
1. 广西大学土木建筑工程学院, 广西 南宁 530004;2. 广西大学特色金属材料与组合结构全寿命安全国家重点实验室, 广西 南宁 530004;3. 湖南交通职业技术学院建筑工程学院, 湖南 长沙 410132
The influence of intumescent fire-retardant coating on the fire resistance of assembled frame tunnel
HUANG Zhen1,2, YE Zhangqian1, ZHANG Jiawei1, PENG Zimao3, YAN Zhanshuo1
1. School of Civil Engineering and Architecture, Guangxi University, Nanning 530004, Guangxi, China;
2. State Key Laboratory of Life-Cycle Safety of Characteristic Metal Materials and Composite Structures, Guangxi University, Nanning 530004, Guangxi, China;
3. Architectural Engineering Institute, Hunan Communication Polytechnic, Changsha 410132, Hunan, China
下载:  PDF (21573KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 为评估防火涂料对装配式框架隧道耐火性的影响,通过火灾试验分析涂有膨胀型防火涂料的隧道接头构件的温度场分布规律,并采用有限元数值模拟方法研究火灾下防火涂料对装配式框架隧道温度、变形、损伤的影响。研究结果表明:防火涂料阻碍热量向隧道衬砌传递,大幅降低隧道衬砌的温度峰值,延迟温度峰值产生的时间;防火涂料厚度影响隧道衬砌在火灾下的升温速率与温度峰值,当膨胀型防火涂料厚度大于10 mm,增加防火涂料的厚度不能有效降低隧道在火灾下的变形;火灾下装配式框架隧道最大变形处为顶板跨中位置,损伤最严重处为隧道接头位置,可间接通过优化接头结构受力性能来提升装配式框架隧道的耐火性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄震
叶张骞
张嘉伟
彭子茂
严展硕
关键词:  隧道工程  装配式隧道  防火涂料  火灾试验  热力耦合    
Abstract: To evaluate the influence of fire-retardant coating on the fire resistance of assembled frame tunnel, the temperature field distribution law of tunnel joint components coated with intumescent fire-retardant coating was analyzed by fire test, and the influence of fire-retardant coating on the temperature, deformation and damage of assembled frame tunnel under fire was studied by finite element numerical simulation. The results showed that the fire-retardant coating hindered the heat transfer to the tunnel lining, greatly reduced the temperature peak of the tunnel lining, and delayed the time of the temperature peak. The thickness of fire-retardant coating affected the heating rate and temperature peak of tunnel lining under fire, but when the thickness of the intumescent fire-retardant coating was greater than 10 mm, changing the thickness of fire-retardant coating couldn't effectively reduce the deformation of tunnel under fire. The maximum deformation of the prefabricated frame tunnel under fire was the mid-span position of the roof, and the most serious damage was the position of the tunnel joint, which could indirectly improve the fire resistance of the prefabricated frame tunnel by optimizing the mechanical performance of the joint structure.
Key words:  tunnel engineering    fabricated tunnel    fire-retardant coating    fire test    thermo-mechanical couplingReceived:2023-09-22    Revised:2023-12-08    Accepted:2023-12-11    Published:2024-06-20
发布日期:  2024-06-28     
中图分类号:  U45  
基金资助: 国家自然科学基金资助项目(52208388);广西科技基地和人才专项基金资助项目(桂科AD21220039);湖南省自然科学基金资助项目(2022JJ60055);湖南省交通运输厅科技进步与创新计划资助项目(202147)
作者简介:  黄震(1989— ),男,湖南长沙人,副教授,博士生导师,博士,主要研究方向为隧道结构减灾机理及防控策略. E-mail:z-huang@gxu.edu.cn
引用本文:    
黄震,叶张骞,张嘉伟,彭子茂,严展硕. 膨胀型防火涂料对装配式框架隧道耐火性影响[J]. 隧道与地下工程灾害防治, 2024, 6(2): 46-58.
HUANG Zhen, YE Zhangqian, ZHANG Jiawei, PENG Zimao, YAN Zhanshuo. The influence of intumescent fire-retardant coating on the fire resistance of assembled frame tunnel. Hazard Control in Tunnelling and Underground Engineering, 2024, 6(2): 46-58.
链接本文:  
http://tunnel.sdujournals.com/CN/Y2024/V6/I2/46
[1] 王卫东,丁文其,杨秀仁,等. 基坑工程与地下工程: 高效节能、环境低影响及可持续发展新技术[J]. 土木工程学报, 2020, 53(7): 78-98. WANG Weidong, DING Wenqi, YANG Xiuren, et al. Deep excavation engineering and underground engineering:new techniques of high-efficiency and energy-saving, low environmental impact, and sustainable development[J]. China Civil Engineering Journal, 2020, 53(7): 78-98.
[2] HUANG Z, ZHANG C L, MA S K, et al. Study of the mechanical behaviour and damage characteristics of three new types of joints for fabricated rectangular tunnels using a numerical approach[J]. Tunnelling and Underground Space Technology, 2021, 118: 104184.
[3] HUANG Z, BAI H W, MA S K, et al. Large-scale testing of the mortise and tenon joint performance of the tunnel lining of prefabricated frame tunnels[J]. Tunnelling and Underground Space Technology, 2023, 131: 104828.
[4] HUANG Z, HU Z J, ZHANG C L, et al. Deformation characteristics and damage assessment of prefabricated frame tunnels after central and external explosions[J]. Sustainability, 2022, 14(16): 9942.
[5] 朱旻,孙晓辉,陈湘生,等. 地铁地下车站绿色高效智能建造的思考[J]. 隧道建设(中英文), 2021, 41(12): 2037-2047. ZHU Min, SUN Xiaohui, CHEN Xiangsheng, et al. Green, efficient, and intelligent construction of underground metro station[J]. Tunnel Construction, 2021, 41(12): 2037-2047.
[6] 《中国公路学报》编辑部.中国隧道工程学术研究综述·2015[J].中国公路学报, 2015, 28(5): 1-65. Editorial Department of China Journal of Highway and Transport. Review on China's tunnel engineering research: 2015[J]. China Journal of Highway and Transport, 2015, 28(5): 1-65.
[7] 朱合华,周龙,沈奕,等. 火灾高温下盾构衬砌结构试验与力学模型综述[J]. 中国公路学报, 2017, 30(8): 15-23. ZHU Hehua, ZHOU Long, SHEN Yi, et al. Review of experiments and mechanical models of shield lining structure exposed to high temperature[J]. China Journal of Highway and Transport, 2017, 30(8): 15-23.
[8] 章庭瑞. 大型盾构隧道火灾高温特性及力学行为研究[J]. 现代隧道技术, 2022, 59(5): 202-211. ZHANG Tingrui. Research on thermal properties and mechanical behaviors of large shield tunnel in fire[J]. Modern Tunnelling Technology, 2022, 59(5): 202-211.
[9] CARLTON A, MA S D, QUIEL S E, et al. Comparative response of tiled finishes and bonded fire resistive coatings for normal weight concrete tunnel liners under high-intensity one-sided heating[J]. Tunnelling and Underground Space Technology, 2023, 139: 105225.
[10] REN R, ZHOU H, HU Z, et al. Statistical analysis of fire accidents in Chinese highway tunnels 2000-2016[J]. Tunnelling and Underground Space Technology, 2019, 83: 452-460.
[11] TARADA F, KING M. Structural fire protection of railway tunnels[C] //Railway Engineering Conference. [S.l.] :[s.n.] , 2009: 24-25.
[12] SHEN Y, ZHU H H, YAN Z G, et al. Semi-analytical thermo-mechanical model for the shield tunnel segmental joint subjected to elevated temperatures[J]. Tunnelling and Underground Space Technology, 2021, 118: 104170.
[13] 王安华. 火灾高温下盾构隧道管片接头损伤研究[D]. 北京: 北京交通大学, 2016. WANG Anhua. Research on segment joint damage of shield tunnel under high temperature fire[D]. Beijing: Beijing Jiaotong University, 2016.
[14] YAN Z G, ZHU H H, JU J W, et al. Full-scale fire tests of RC metro shield TBM tunnel linings[J]. Construction and Building Materials, 2012, 36: 484-494.
[15] YAN Z G,ZHU H H, JU J W. Behavior of reinforced concrete and steel fiber reinforced concrete shield TBM tunnel linings exposed to high temperatures[J]. Construction and Building Materials,2013,38: 610-618.
[16] RING T,ZEIML M, LACKNER R. Underground concrete frame structures subjected to fire loading: part I: large-scale fire tests[J]. Engineering Structures,2014,58: 175-187.
[17] HUANG Z, ZHANG J W, PENG Z M, et al. Simulation of thermomechanical coupling and evaluation of the fire resistance for the joints of fabricated frame tunnel[J]. Fire, 2022, 6(1): 3.
[18] CHANG S H, CHOI S W, LEE J. Determination of the combined heat transfer coefficient to simulate the fire-induced damage of a concrete tunnel lining under a severe fire condition[J]. Tunnelling and Underground Space Technology, 2016, 54: 1-12.
[19] QIAO R J, SHAO Z S, LIU F Y, et al. Damage evolution and safety assessment of tunnel lining subjected to long-duration fire[J]. Tunnelling and Underground Space Technology, 2019, 83: 354-363.
[20] SHEN Y, ZHU H H, YAN Z G, et al. Thermo-mechanical analysis of fire effects on the structural performance of shield tunnels[J]. Tunnelling and Underground Space Technology, 2023, 132: 104885.
[21] ALHAWAT H, HAMID R, BAHAROM S, et al. Thermal behaviour of unloaded concrete tunnel lining through an innovative large-scale tunnel fire experimental testing setup[J]. Construction and Building Materials, 2021, 283: 122718.
[22] YAN Z G,SHEN Y,ZHU H H, et al. Experimental investigation of reinforced concrete and hybrid fibre reinforced concrete shield tunnel segments subjected to elevated temperature[J]. Fire Safety Journal, 2015, 71: 86-99.
[23] GUERRIERI M, SANABRIA C, LEE W M, et al. Design of the metro tunnel project tunnel linings for fire testing[J]. Structural Concrete, 2020, 21(6): 2452-2480.
[24] WANG F, WANG M N, HUO J X. The effects of the passive fire protection layer on the behavior of concrete tunnel linings: a field fire testing study[J]. Tunnelling and Underground Space Technology, 2017, 69: 162-170.
[25] DUAN J T, DONG Y L, XIAO J Z, et al. A large-scale fire test of an immersed tunnel under the protection of fire resistive coating[J]. Tunnelling and Underground Space Technology, 2021, 111: 103844.
[26] HUANG Z, ZHANG C L, MA S K, et al. Study of the mechanical behaviour and damage characteristics of three new types of joints for fabricated rectangular tunnels using a numerical approach[J]. Tunnelling and Underground Space Technology, 2021, 118: 104184.
[27] 秦汝祥, 葛小丽, 滕丽影, 等. 膨胀型钢结构防火涂料的制备及性能[J]. 电镀与涂饰, 2023, 42(12): 63-70. QIN Ruxiang, GE Xiaoli, TENG Liying, et al. Preparation and properties of intumescent fireproof paint for steel structures[J]. Electroplating & Finishing, 2023, 42(12): 63-70.
[28] 林元明, 李自祥, 熊晓立, 等. 非膨胀型防火涂料的力学和耐火性能试验研究[J]. 电镀与涂饰, 2023, 42(18): 70-76. LIN Yuanming, LI Zixiang, XIONG Xiaoli, et al. Mechanical properties and fire resistance of non-intumescent fireproof paint: a case study[J]. Electroplating & Finishing, 2023, 42(18): 70-76.
[29] CARLTON A, MA S D, QUIEL S E, et al. Comparative response of tiled finishes and bonded fire resistive coatings for normal weight concrete tunnel liners under high-intensity one-sided heating[J]. Tunnelling and Underground Space Technology, 2023, 139: 105225.
[30] KIM J H J, LIM Y M, WON J P, et al. Fire resistant behavior of newly developed bottom-ash-based cementitious coating applied concrete tunnel lining under RABT fire loading[J]. Construction and Building Materials, 2010, 24(10): 1984-1994.
[31] DUAN J T, DONG Y L, XIAO J Z, et al. A large-scale fire test of an immersed tunnel under the protection of fire resistive coating[J]. Tunnelling and Underground Space Technology, 2021, 111: 103844.
[32] 中华人民共和国住房和城乡建设部. 建筑设计防火规范: GB 50016—2014[S]. 北京: 中国计划出版社, 2014.
[33] 奚成. 成都市磨子桥装配式隧道分块拼装技术研究[J]. 铁道建筑技术, 2019(12): 81-85. XI Cheng. Research on prefabricated components assembly technology for moziqiao tunnel in Chengdu[J]. Railway Construction Technology, 2019(12): 81-85.
[34] 招商局重庆交通科研设计院有限公司. 公路隧道设计规范 第一册 土建工程: JTG 3370.1—2018[S]. 北京:人民交通出版社, 2019.
[35] ZHANG G L, ZHANG W J, ZHANG X X, et al. Evaluation on fire resistance of composite segmental lining for shield tunnel[J]. Tunnelling and Underground Space Technology, 2023, 131: 104781.
[36] 过镇海, 时旭东. 钢筋混凝土的高温性能及其计算[M]. 北京: 清华大学出版社, 2003.
[37] European Committee for Standardization. BS EN 1992-1-2: 2004 eurocode 2: design of concrete structures-part 1-2: general rules-structural fire design[S]. London, Britain: British Standards Institution, 2004.
[38] European Committee for Standardization. BS EN 1994-1-2: 2005 eurocode 4: design of composite steel and concrete structures:part 1-2: general rules-structural fire design[S]. Brussels, Belgium: British Standards Institution, 2005.
[39] European Committee for Standardization. BS EN 1993-1-2, eurocode 3, design of steel structures: part 1-2: general rules-structural fire design[S].Brussels, Belgium: British Standards Institution, 2005.
[40] 朱合华, 闫治国, 梁利, 等. 不同火灾升温曲线下隧道内温度场分布规律研究[J]. 地下空间与工程学报, 2012, 8(增刊1): 1595-1600. ZHU Hehua, YAN Zhiguo, LIANG Li, et al. Numerical study on temperature distribution in tunnel linings under fire cases[J]. Chinese Journal of Underground Space and Engineering, 2012, 8(Suppl.1): 1595-1600.
[41] SHI C H, WANG Z X, GONG C J, et al. Prediction of the additional structural response of segmental tunnel linings induced by asymmetric jack thrusts[J]. Tunnelling and Underground Space Technology, 2022, 124: 104471.
[42] YAN Z G, SHEN Y, ZHU H H, et al. Experimental study of tunnel segmental joints subjected to elevated temperature[J]. Tunnelling and Underground Space Technology, 2016, 53: 46-60.
[43] KUANG Y C, PENG Z W, YANG J H, et al. Physical and numerical simulations on mechanical properties of a prefabricated underground utility tunnel[J]. Materials, 2022, 15(6): 2276.
[1] 闫治国,王紫锐,沈奕,刘康. 碳氢曲线下大直径盾构隧道结构热力特性[J]. 隧道与地下工程灾害防治, 2024, 6(2): 25-36.
[2] 韩兴博, 陈子明, 苏恩杰, 梁晓明, 宋桂峰, 叶飞. 盾构隧道围岩压力分布规律及作用模式[J]. 隧道与地下工程灾害防治, 2022, 4(4): 34-43.
[3] 房倩, 杜建明, 王赶, 杨晓旭. 模型边界对圆形隧道开挖引起地表沉降的影响分析[J]. 隧道与地下工程灾害防治, 2022, 4(1): 10-17.
[4] 张姣龙, 高一民, 张建, 周浩, 潘野, 柯磊, 柳献. 一种模拟盾构刀盘破岩过程的模型试验设计原理和方法[J]. 隧道与地下工程灾害防治, 2021, 3(4): 20-28.
[5] 郭新新, 朱安龙, 王万平, 汪波, 王智佼, 王振宇. 高应力炭质板岩隧道大变形特征及其机理分析[J]. 隧道与地下工程灾害防治, 2021, 3(4): 29-39.
[6] 王纪伟, 张连震, 张庆松, 杨旆, 陈新, 王建辉, 韩子川, 王洪超, 孙子正, 屠文锋. 富水裂隙岩体注浆材料适用性现场试验研究[J]. 隧道与地下工程灾害防治, 2021, 3(1): 58-67.
[7] 刘立鹏,王彦兵,宋倩. 水工有压隧洞衬砌启裂水头及围岩联合承载影响分析[J]. 隧道与地下工程灾害防治, 2020, 2(4): 52-58.
[8] 叶飞, 王坚, 田崇明, 何彪, 赵猛, 韩兴博, 李永健. 隧道排水管结晶堵塞病害研究现状与防治技术[J]. 隧道与地下工程灾害防治, 2020, 2(3): 13-22.
[9] 李鹏飞, 刘宏翔, 赵勇, 刘建友, 王帆. 隧道穿越断层破碎带防突水最小安全厚度及其影响因素[J]. 隧道与地下工程灾害防治, 2020, 2(3): 77-84.
[10] 李利平,贺鹏,石少帅,刘洪亮,胡杰,秦承帅. 隧道施工过程巨石垮塌研究现状、问题与对策研究[J]. 隧道与地下工程灾害防治, 2019, 1(3): 22-31.
[11] 陈卫忠, 袁敬强, 黄世武, 杨磊. 富水风化花岗岩隧道突水突泥灾害防治技术[J]. 隧道与地下工程灾害防治, 2019, 1(3): 32-38.
[12] 王焕. 大直径泥水盾构穿越无加固条件沉降敏感带扰动控制技术研究[J]. 隧道与地下工程灾害防治, 2019, 1(2): 107-113.
[13] 谭忠盛. 热处理高强钢筋格栅在隧道工程应用的试验研究[J]. 隧道与地下工程灾害防治, 2019, 1(1): 86-92.
[14] 陈建勋, 罗彦斌. 大跨度黄土公路隧道结构稳定性及控制技术研究[J]. 隧道与地下工程灾害防治, 2019, 1(1): 93-101.
[15] 李天斌,巫晨笛,孟陆波,高美奔. 隧道坍方动态分析与综合预警方法研究[J]. 隧道与地下工程灾害防治, 2019, 1(1): 111-118.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
网站版权 © 《隧道与地下工程灾害防治》编辑部
地址:山东省济南市山大南路27号山东大学中心校区明德楼B733《隧道与地下工程灾害防治》编辑部, 邮编:250100, 电话:0531-88366735, E-mail:tunnel@sdu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn